

Measurements of the Lorentz Angle in the CMS Barrel Pixel Detector with Collisions and Cosmic Data (preliminary)

Mirena Ivova

University of Zurich

CHIPP PhD Winter School Ascona, 17-24 January 2010

Outline

- ★ The Large Hadron Collider at CERN and the CMS experiment
- ★ The silicon pixel detector of CMS
- ★ Lorentz angle in the CMS barrel pixel detector
- ★ Measurements of the Lorentz angle with the first collision data from LHC
- ★ Measurements of the Lorentz angle with cosmic data
- **★** Summary

The Large Hadron Collider

- 27 km in circumference; 50 to 175 m underground
- pp collisions, $\sqrt{s} = 14$ TeV, lead nuclei collisions, $\sqrt{s} = 574$ TeV per nucleus
- superconducting magnets
 - operating temperature 1.9 K (-271.3 °C)
 - peak magnetic field 8.3 T
- ultrahigh vacuum (10⁻¹⁰ Torr or ~3 million molecules/cm³)
- collisions rate 25 ns

Four major experiments:

- A Toroidal LHC ApparatuS (ATLAS) and the Compact Muon Solenoid (CMS): Higgs boson, SUSY, ...
- A Large Ion Collider Experiment (**ALICE**): quark-gluon plasma
- LHCb: b(eauty)-physics

In December 2009, LHC provided for the first time pp collisions at energy $\sqrt{s} = 2.36$ TeV, setting world record for beam and collisions energy

Total weight: 12 500 T Overall diameter: 15.0 m Overall length: 21.5 m Magnetic field: 3.8 Tesla

- Silicon inner tracker
 - tracks and secondary vertices reconstruction
- Electromagnetic calorimeter
 - energies of electrons and photons
- Hadronic calorimeter
 - energies of hadrons and ID of events with missing energy
- Magnet
 - 3.8 T superconducting solenoid bending the trajectories of charged particles
- Muon system and return yoke
 - ID and momenta measurements of muons

Total weight: 12 500 T Overall diameter: 15.0 m Overall length: 21.5 m Magnetic field: 3.8 Tesla

- Silicon inner tracker
 - tracks and secondary vertices reconstruction
- Electromagnetic calorimeter
 - energies of electrons and photons
- Hadronic calorimeter
 - energies of hadrons and ID of events with missing energy
- Magnet
 - 3.8 T superconducting solenoid bending the trajectories of charged particles
- Muon system and return yoke
 - ID and momenta measurements of muons

Total weight: 12 500 T Overall diameter: 15.0 m Overall length: 21.5 m Magnetic field: 3.8 Tesla

- Silicon inner tracker
 - tracks and secondary vertices reconstruction
- Electromagnetic calorimeter
 - energies of electrons and photons
- Hadronic calorimeter
 - energies of hadrons and ID of events with missing energy
- Magnet
 - 3.8 T superconducting solenoid bending the trajectories of charged particles
- Muon system and return yoke
 - ID and momenta measurements of muons

Total weight: 12 500 T Overall diameter: 15.0 m Overall length: 21.5 m Magnetic field: 3.8 Tesla

- Silicon inner tracker
 - tracks and secondary vertices reconstruction
- Electromagnetic calorimeter
 - energies of electrons and photons
- Hadronic calorimeter
 - energies of hadrons and ID of events with missing energy
- Magnet
 - 3.8 T superconducting solenoid bending the trajectories of charged particles
- Muon system and return yoke
 - ID and momenta measurements of muons

Total weight: 12 500 T Overall diameter: 15.0 m Overall length: 21.5 m Magnetic field: 3.8 Tesla

- Silicon inner tracker
 - tracks and secondary vertices reconstruction
- Electromagnetic calorimeter
 - energies of electrons and photons
- Hadronic calorimeter
 - energies of hadrons and ID of events with missing energy
- Magnet
 - 3.8 T superconducting solenoid bending the trajectories of charged particles
- Muon system and return yoke
 - ID and momenta measurements of muons

Total weight: 12 500 T Overall diameter: 15.0 m Overall length: 21.5 m Magnetic field: 3.8 Tesla

- Silicon inner tracker
 - tracks and secondary vertices reconstruction
- Electromagnetic calorimeter
 - energies of electrons and photons
- Hadronic calorimeter
 - energies of hadrons and ID of events with missing energy
- Magnet
 - 3.8 T superconducting solenoid bending the trajectories of charged particles
- Muon system and return yoke
 - ID and momenta measurements of muons

Event display: muon candidate in CMS at 900 GeV

<u>Performance challenge</u>:

- \sim charged 1000 particles every 25 ns
- secondary vertices (b-, τ tagging)
- radiation hardness

<u>Design</u>:

barrel pixel detector:

- three layers (at 4.3cm, 7.2cm and 10.2cm), 53 cm in length
- modules
- silicon pixel sensors (100 μ m by 150 μ m; 285 μ m thick)

forward pixel detector (endcaps):

- two disks at both ends

Spatial resolution: 15-20 μm

the third layer in the lab

<u>Performance challenge</u>:

- \sim charged 1000 particles every 25 ns
- secondary vertices (b-, τ- tagging)
- radiation hardness

<u>Design</u>:

barrel pixel detector:

- three layers (at 4.3cm, 7.2cm and 10.2cm), 53 cm in length
- modules
- silicon pixel sensors (100 μm by 150 μm; 285 μm thick)

forward pixel detector (endcaps):

- two disks at both ends

Spatial resolution: 15-20 μm

the third layer in the lab

<u>Performance challenge</u>:

- \sim charged 1000 particles every 25 ns
- secondary vertices (b-, τ- tagging)
- radiation hardness

<u>Design</u>:

barrel pixel detector:

- three layers (at 4.3cm, 7.2cm and 10.2cm), 53 cm in length
- modules
- silicon pixel sensors (100 μm by 150 μm; 285 μm thick)

forward pixel detector (endcaps):

- two disks at both ends

Spatial resolution: 15-20 μm

the third layer in the lab

<u>Performance challenge</u>:

- \sim charged 1000 particles every 25 ns
- secondary vertices (b-, τ tagging)
- radiation hardness

<u>Design</u>:

barrel pixel detector:

- three layers (at 4.3cm, 7.2cm and 10.2cm), 53 cm in length
- modules
- silicon pixel sensors (100 μm by 150 μm; 285 μm thick)

forward pixel detector (endcaps):

- two disks at both ends

Spatial resolution: 15-20 µm

Performance challenge:

- \sim charged 1000 particles every 25 ns
- secondary vertices (b-, τ tagging)
- radiation hardness

Design:

barrel pixel detector:

- three layers (at 4.3cm, 7.2cm and 10.2cm), 53 cm in length
- modules
- silicon pixel sensors (100 μm by 150 μm; 285 μm thick)

forward pixel detector (endcaps):

- two disks at both ends

Spatial resolution: 15-20 μm

Mirena Ivova

Lorentz drift in the barrel pixel detector

Origin:

- electron-hole pairs in the pixel sensors
- $B \perp E$

=> Lorentz force along *x* direction on the ejected electrons

The Lorentz drift results in:

- widened clusters in x direction
- charge sharing between pixels

affects position resolution

- the Lorentz angle depends on *E* and *B*
- bias voltage increased with time due to irradiation

the Lorentz angle changes with time

Two methods used to extract the Lorentz angle:

- "grazing angle" method for collision data
- "minimal cluster size" method for cosmic data

Lorentz angle extraction from collision data

Idea of the "grazing angle" method

• use of well reconstructed tracks so that the path through the detector is known

- averaged over many tracks: drift distance vs production depth
- fit over the depth of the detector

Tracks with shallow impact ("grazing") angle w.r.t local y axis are used (long clusters in y are required)

900 GeV collisions, B = 3.8 T

Depth at which the electrons are produced vs their drift distance

Linear fit to obtain the slope $p1 = tan(\theta_{LA})$

$$\theta_{\rm LA} = 21.4^{\circ} \pm 0.6^{\circ} ({\rm stat})$$

2360 GeV collisions, B = 3.8 T

In theory, the Lorentz angle does not depend on the energy.

The results at different energies agree

$$\theta_{\rm LA} = 21.4^{\circ} \pm 0.3^{\circ} ({\rm stat})$$

900 GeV collisions, B = 2 T

The Lorentz angle is expected to decrease at lower magnetic fields

$$\theta_{\rm LA} = 11.5^{\circ} \pm 0.2^{\circ} ({\rm stat})$$

Lorentz angle extraction from cosmic data

Idea of the "minimal cluster size" method

- The spread of the drifting charge distribution over neighbouring pixels depends on the particle's incidence angle α and is minimum for an angle equal to the Lorentz angle Θ_{LA}
- The Lorentz angle is extracted by finding the minimum of the mean cluster size distribution measured as a function of the track incidence angle

minimal cluster size in x, using $tan(\Theta) = cotan(\alpha)$ => $tan(\Theta_{LA}) = cotan(\alpha)_{min}$

this method is not suitable for collision data because in collision data $80^{\circ} < \alpha < 100^{\circ}$

 $cotan(\alpha)$

Result from cosmic data (CRAFT09)

Opportunity for cross-check with a different and independent method and data

Cosmic data taken during summer '09

 $\theta_{\rm LA} = 22.2^{\circ} \pm 0.1^{\circ} ({\rm stat})$

The results from collision data and cosmic data agree

Summary of the results

data type	Lorentz angle
900 GeV, 3.8 T	$21.4^{\circ} \pm 0.6^{\circ}$
2360 GeV, 3.8 T	$21.4^{\circ} \pm 0.3^{\circ}$
900 GeV, 2 T	$11.5^{\circ} \pm 0.2^{\circ}$
cosmics, 3.8 T	22.2° ± 0.1°

Errors are statistical errors only!

Summary

- ★ Calibration of the Lorentz angle in the CMS silicon pixel detector needed in order to correct hit position
- ★ The Lorentz angle for the CMS barrel pixel detector measured from LHC first collision data and from cosmic data
- ★ Agreement between collision data and cosmic data results

Thank you for your attention! ©