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Alignment of a simple toy tracker

Think of an ideal tracker built of five sensors. ..
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Alignment of a simple toy tracker
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A track runs through our device




Alignment of a simple toy tracker

The track generates hits




Alignment of a simple toy tracker

What you really see are the hits




Alignment of a simple toy tracker

In reality your modules are misaligned
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Alignment of a simple toy tracker

You still assume an ideal tracker




Alignment of a simple toy tracker

Then your fitted track will look probably like this one
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Alignment of a simple toy tracker

Calculate new positions of the modules and your fit will be better
— limited to track hit precision, of course
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Alignment of a simple toy tracker

Do this for a lot of tracks collected over time




Alignment of a simple toy tracker
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Again, you know nothing about reality, tf. assume ideal geometry
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Alignment of a simple toy tracker

Fit tracks and calculate new positions
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Alignment of a simple toy tracker

And end up with a better aligned tracker




A slice of CMS
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This shows a slice of the CMS experiment. The silicon tracker

covers the innermost ~ 1 m of the path a particle from the
interaction point takes through the experiment.
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The CMS inner tracker
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The tracker is split into the following subdetectors:
Pixel: pixel barrel (PXB) and pixel endcap (PXE)
Silicon strips:  Tracker inner barrel (TIB) and outer barrel (TOB)
Tracker inner disk (TID) and endcap (TEC)

The pixel consists of 1440 modules, the strip of 15148 modules
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The coordinate system

w(r) This shows the local

coordinate system

v definition used in the
CMS tracker.

u is defined to be the
most sensitive
coordinate.

The global coordinates

in parantheses are valid
in barrel structures only.
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The alignment problem

Track based alignment is a case of a least squares problem.

» We have to solve for parameters describing the position of the
modules:

Nglobpars = Nmodules * Ndegrees of freedom
= 16588 - 6 = 99528 ~ 10°

» And we have parameters describing the tracks. Typical
alignment for our detector requires O(10°) tracks with at
least 5 parameters to describe one track.

We end up in a least squares problem with O(107) parameters,
which is challenging to solve in reasonable time, e.g. in 24 hours.
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Alignment algorithms used

The expression to be minimized is

tracks hits

pa)= > rf(p.a)V;'ri(p.qy)
Jj i

where p are the module parameters and q; are the track
parameters. Two approaches are used within CMS:

Millepede-Il This is a global approach. Reduces the complexity of
the problem by restricting the solution to the module
parameters only, therefore the problem is O(10°).

HIP This is a local iterative approach reducing the
complexity to solving a local problem of O(10!) at
every module. Correlations between modules are
recovered while iterating.

Typical run time is a few hours on current CPUs for both
algorithms.
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Alignment algorithms

The two algorithms are somewhat complementary:

Algorithm Advantages Disadvantages

global

(Millepede-I) » includes correlations » uses a simplified track
between modules model (specific to CMS

> only a few iterations implementation, this
due to outlier rejection has ben 'changed
meanwhile)

local

(HIP) » track model as in CMS » ignores correlations
track reconstruction between modules
(Kélman filter) » many iterations if start

» implementation allows
use of survey data

values are far away

Therefore we used a combined approach

: first Millepede
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Motivation for alignment: pr resolution

Why do we need a good alignment? Some results of MC studies to
get a feeling:

ke rate vs n for ttbar events |
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Left: Track reconstruction efficiency for single muons with pr of
100 GeV/c for a selection of misalignment scenarios.
Right: Fake rate for tt events.
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Results

Some information about the results | present in the following
slides:

» The cosmics events were recorded in autumn 2008

» The total number of events detected by CMS during this
campaign was about 300 million

» 3.2 million of them have hits in the tracker suitable for
alignment use

» The rate is about 5 Hz

» The fraction in the pixel detector was ~ 3% in the barrel and
~ 1.5% in the endcaps.

» Data used for alignment and validation were not statistically
independent due to limited number of events collected.

» All results shown are preliminary

Sorry, no 2009 results released yet (but no surprises in there,
anyway). ;
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Track x?/ndof

For each track x2/ndof is calculated and
histogrammed. ndof is the number of degrees of
freedom, which depends on how many hits were read
out by the detector for a given track.

This histogram gives a first overview in how good the
overall alignment is.
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Track x?/ndof

o CMS 2008  The three alignment
g pTTITTIITITITTITTTTITTTTD approaches show the
8 0'4: 1 expected order, where
5 l:ﬂ-‘ PR combneg et 7 the combined method
é 0-3:* .- 1| _______ DATA ocal moth | outperforms the others.
2 N r 1. """"""" DATA non-algned 1 The non-aligned
U L 1 geometry, assuming
Eof 1 ideal design geometry,
0.1 r! - shows the worst result.
i _,J.I 1 This includes proper
i " 3 ¢ calibration of the
x/ndof  alignment position

€rrors.
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Distribution of the median of the residuals (DMR)

/ Track residual plots are constructed in the following
way:
1. loop over tracks
2. for each hit perform a refit of the track without
this hit
3. calculate the distance between the predicted hit by

the track and the measured hit; the so called
unbiased residual
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Distribution of the median of the residuals (DMR)

Two effects besides alignment dominate the distribution of these
residuals:

1. track extrapolation uncertainties (multiple scattering)
2. hit position uncertainties

Both are random effects. Alignment effects lead to systematic
shifts. Therefore for modules with more than 30 hits we calculate
the median.
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Distribution of the median of the residuals (DMR)

g_ — f)ATA c‘ombin‘ed me‘lh. ‘ q DMR PlOt Of the pixel
L mean=-0.1pum —
N800 ovsae m i 1 barrel detector as a
7] | e DATA non-aligne -1 i .
L [ mean=T81um M 1 representative example
S RMS=328.7 um E
S b MC ideal , 1 compared to a
€ 200r mean= 0.0 um | _| . .
s f  Rws=21um [ 1 Monte-Carlo simulation.
5 [ E ’
£ E 1
2 100 E | The non-aligned
i r 8 1 geometry shows very
i o '_L 1 poor results whereas the
= L bt 2%  alignment recovers the

po (U [um]

2" pred” performance close to the

MC performance.

P T
w AUL SCHERRER INSTITUT

27 | AG



DMR — Observed values

The table shows the observed RMS values for the individual
subdetectors. Note: Pixels detect in two dimensions.

subdetector | non-aligned global local combined modules
(coordinate) [m] [um]  [pm] [1m] >30 hits
PXB (u') 3287 75 3.0 2.6
PXB (v') 274.1 6.0 134 4.0 757/768
PXE (u") 389.0 235 265 13.1
1/672
PXE (') 3858 200 239 139 | M7
TIB (v 712.2 4.9 7.1 2.5 2623/2724
TOB (u') 168.6 5.7 35 2.6 5129/5208
TID (v') 295.0 7.0 6.9 33 807/816
TEC (v') 216.9 25.0 10.4 7.4 6318,/6400

Note: Keep the definition of DMR in mind — we don't know the
absolute positions of the modules by that precision. With cosmics
we are blind to some deformation modes. Collision tracks will
improve this.
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DMR — Monte Carlo

In order to check the performance, the procedure has been
compared to a Monte-Carlo simulation for cosmic muons

subdetector | combined | combined ideal

(coordinate) [em] MC [gm]  MC [um]
PXB (u") 2.6 2.1 2.1
PXB (v') 4.0 2.5 2.4
PXE (u") 13.1 12.0 9.4
PXE (v') 13.9 11.6 9.3
TIB (v 2.5 1.2 1.1
TOB () 2.6 1.4 1.1
TID (u) 3.3 2.4 1.6
TEC (v') 7.4 4.6 2.5

The achieved alignment is therefore already close to what is
possible, according to MC.

The worse results for the PXE match also the expectations by MC.
This is due to low percentage of modules hit by cosmics and
suboptimal track angles.
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Track parameter resolution

Does the tracker fulfill its purpose? One example to
prove this is the following:

1. Take cosmic tracks penetrating the pixel barrel to
mimic tracks from collisions
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Track parameter resolution

Does the tracker fulfill its purpose? One example to
prove this is the following:

1. Take cosmic tracks penetrating the pixel barrel to
mimic tracks from collisions

2. Split them at the closest approach to the tracker
center
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Track parameter resolution

Does the tracker fulfill its purpose? One example to
prove this is the following:

1. Take cosmic tracks penetrating the pixel barrel to
mimic tracks from collisions

2. Split them at the closest approach to the tracker
center

3. Do a refit for both halves

4. Compare the difference in the track parameters
(i.e. 1/pr,dxy, dz,0,$) at the point of closest
approach of the two tracks

This has been done with real data and in a Monte-Carlo
study.

PAUL SCHERRER INSTITUT

29 / AA



Track parameter resolution (r¢)
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This is the plot for the
impact parameter in the
r¢ plane.

The aligned tracker (in
red) shows a
performance close to
what is expected in
Monte-Carlo for an ideal
tracker (in blue), which
is about 30 pm.
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Track parameter resolution (z)

This is the plot for the
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Track parameter resolution (pr)

Number of Tracks/8.0x10° ¢/GeV
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The same for the
curvature (1/p71).

Again the tracker shows
performance close to
design.
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Conclusions

» Alignment using cosmic tracks has been performed
successfully.

» Several validation studies have been carried out, both on
low-level and high-level.

» The performance of the tracker is well within the expectations.

» Another run of cosmic data tacking has been performed
between August and November 2009 (with interruptions). No
surprises found (but results are not yet officially released).

> First experience with collision data gathered. Collected
number of events not high enough to perform reasonable
alignment. We wait for more data.
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Motivation for alignment: pr resolution
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Left: Muon p7 residual distribution. Right: pt resolution vs. 7.
Both for muons with pr of 100 GeV/c.
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Overlap studies

There are several areas in the tracker where modules
/ overlap. Effects of material and track propagation
between two such layers are small.

The method compares the differences in the residuals of
two hits in an overlapping module pair.
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Overlap studies
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Overlap studies
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Track

residual plots
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Systematic misalignment studies
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Impact to physics analysis
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These plots show the impact on b-jet efficiency vs. non-b-jet
efficiency for a selection of misalignment scenarios.
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