

The XENON 100 Detector for Dark Matter Searches

XENON-100 collaboration

~40 researchers from

USA, Switzerland, Italy, Portugal, Germany, France, China

Columbia University

University of California

University of Zürich

University of Coimbra

Rice University

Shanghai Jiao Tong University

Laboratori Nazionali del Gran Sasso

The XENON WIMP Search Program

Target Volume ~100 kg Muon Veto **QUPIDs**

2005 - 2007

Target Volume ~10 kg

XENON 100+

XENON 100

XENON 1T

2013 - 2015

2007

Target Volume 65 kg Total 170 kg of LXe

XENON-100 January 23, 2010 Alexander Kish **CHIPP PhD Winter School** Ascona, Switzerland

Location of the XENON-100 experiment

The Principle of the XENON experiment

Electron/nuclear recoils discrimination based on S2/S1 ratio

XENON-100 Design

Shield:

- lead, 33T
- polyethylene, 1.6T
- copper, 2T

- double walled (1.5 mm thick)
- low r/activity stainless steel
- total weight 70 kg

Bell:

- stainless steel
- weight 3.6 kg

PTFE structure:

- 24 interlocking panels
- enclose target volume
- support field shaping rings
- total weight of teflon 12 kg
- UV light reflector

Target:

- 65 kg of LXe(total amount 170 kg)
- 30 cm diameter,
- 30 cm height

Light Detection in the XENON-100 Detector

Hamamatsu R8520

- 2.5 x 2.5 mm window
- metal channel dynodes
- Kovar housing and pins
- Stainless steel electrodes
- Synthetic quartz glass for window
- Borosilicate glass for stem
- Cirlex bases for voltage divider network
- high Quantum Efficiency (up to 35%)
- low radioactivity (~10mBq/PMT)

Quantum efficiency VS wavelength

Light Detection in XENON-100 Detector

Target Volume

Top PMT array (98 PMTs)

Bottom PMT array (80 PMTs)

- Top array is enclosed in a PTFE structure and arranged in concentric circles to have good fiducial cut efficiency
- Bottom PMTs are placed in a rectangular grid to maximize photocathode coverage
- Average QE on the top array~23%, on the bottom ~33%

Active Veto Volume

Top/Side Top arrays (32 PMTs)

Bottom/Side Bottom arrays (32 PMTs)

 64 tubes in the active veto volume, alternating inwards and up/down, to view the top, bottom and sides

PMT Gain Calibration

Electric Field

- The field is optimized with simulations for homogeneity
- 40 double field shaping rings
- Hexagonal mesh structures
- Anode stack is optimized for optical transparency
- Drift field 1kV/cm (cathode at -30kV)
- Extraction field 5kV

Xenon Liquefaction, Cooling Tower and

- Xe liquefaction is done with the Pulse Tube Refrigerator (160W), which is placed outside the shield
- Liquid Xe flows back into the main vessel from the cooling tower through a small pipe in the center of the double-walled vacuum insulated tube
- Cooling system is backed up with the LN2 emergency coil, which is also placed in the cooling tower
- Distillation column (3 m high) for Kr removal, processing at speed of 0.6 kg/hour (~2 weeks for 170kg)

Data Acquisition System for the XENON-100 experiment

- DAQ is composed of 31 CAEN V1724 14 bit 100 MHz flash ADCs
- Digitization of the full waveforms (320 microsec) of the 242 PMTs
- Deadtime-less mode with the data written to circular buffers and multiple event buffers for storage between VME read cycles
- Digitized signals are "zero-length" encoded; only the relevant signal portions are transferred from the ADC to the DAQ computer

High rate capability for calibration (>50 Hz)

Light Collection Efficiency

- Average LCE in the target volume: 24%
- Average LCE in the active veto volume: 4.7%

Relative LCE in the target volume:

Position Reconstruction

- Z-position inferred by the delay time between the S1 and S2
- XY reconstruction algorithms with support vector machines, neural networks, and χ2 minimization, based on simulated light patterns

Background predictions

- All materials used for detector construction were screened with high purity Ge detectors
- Intrinsic contamination (²³⁸U, ²³²Th, ⁸⁵Kr) is measured with delayed coincidence analysis
- ²²²Rn concentration in the shield is continuously monitored with RAD-7
- Obtained values are used as an input for the background model and MC simulations with GEANT4 of electron and nuclear background from various sources

MC, electron recoils

MC, nuclear recoils

Energy Calibration for the XENON-100 Detector

Calibration with ¹³⁷Cs (662 keV), ⁵⁷Co (122 keV), ⁶⁰Co (1.17, 1.33 MeV), and Am-Be sources

- Calibration with internal uniformly distributed sources:
 - neutron activated xenon: 131mXe (164 keV; 11.8 d), 129mXe (236 keV; 8.9 d)
 - 83mKr (9 keV , 32 keV, 41 keV; 1.8 h) from 83Rb decay

Spatially uniform calibration of a liquid xenon detector at low energies using 83mKr

A. Manalaysay,^{1,2,*} T. Marrodán Undagoitia,¹ A. Askin,¹ L. Baudis,¹ A. Behrens,¹ A. D. Ferella,¹ A. Kish,¹ O. Lebeda,³ R. Santorelli,¹ D. Vénos,³ and A. Vollhardt¹

arXiv:0908.0616

Energy Calibration and Combined Energy Scale

- S1 and S2 signals are anti-correlated
- Distribution of S2 vs S1 can be fitted with an elliptical gaussian function
- Projection along the major axis of an ellipse gives field-independent combined energy scale

S1, position corrected [phe]

Energy Calibration and Combined Energy Scale

Resolution can be improved with radial correction of ionization signal (S2 light collection is not uniform)

XENON Dark Matter Project

Summary

- The detector is operating underground
- Electron lifetime is enough to drift charge through the whole TPC
- Gamma band calibration data with ⁶⁰Co source
- Neutron calibration with Am-Be source was done in December
- Energy calibration in the range 40keV-1MeV, good agreement with MC
- BG model developed within GEANT4 reproduces the data
- Projected sensitivity to 100 GeV WIMP (spin-independent coupling):

50 kg target, 40 days exposure: sensitivity 6•10⁻⁴⁵ cm² 30 kg target, 200 days exposure: sensitivity 2•10⁻⁴⁵ cm²

Spin-dependent (pure n-coupling)