EXO R&D in Bern

Guillaume Giroux

Albert Einstein Center for Fundamental Physics Laboratory for High Energy Physics University of Bern

Ascona, Jan 2010

EXO project

 Probing the 0v2β decay of Xenon-136 (80% enriched)

136
Xe -> 136 Ba⁺⁺ + e⁻ + e⁻

 Readout of the charge and scintillation light in a LXe TPC (200kg)

EXO Gas phase

- Future phase of EXO: ton-scale detector.
- Gaseous xenon TPC a possibility.
- Need to run at high pressure for space economy (10 bars).
- R&D needed to develop a high pressure Gxe TPC with good energy resolution (~1%) + tracking capability.

EXO gas R&D in Bern

- Prototype mini TPC
- Gas purification system
- 64 channels DAQ
- CAEN ADC
 (sampling 62.5 MHz,
 12 bit, 3072
 samples/event)

The mini TPC

- Active volume: 10 cm diameter + 17cm drift
- Charge collected by a micromegas detector (MicroMEsh GAseous Structure)
- Calibration source position apparatus
- Pressure rated to 10 bars

The micromegas

The Micromegas

- made at CERN (R. Oliveira et al.)
- active diameter 100 mm

The micromegas

- 1528 pixels (2.1 mm wide)
- Connected by 2 planes of reading strips

- 31 x 31 x-y strips
- Amplification gap:256µm

Results

- Sample cosmic muon (using argon(90)-CH₄(10) gas (1bar)
- Track reconstructed using x-y planes and drift time

Results

Some sample events

Run# 534, event 3, muon run

Total charge x: 284.44 fC Total charge y: 306.82 fC Total charge grid: 277.51 fC

Cosmic muon with vertical muon veto

Results

Some sample events

Total charge x: 393.97 fC Total charge y: 443.64 fC

No grid

Cosmic muon track with muon veto at 45° angle.

Light collection

- Xenon and CF₄ scintillate
- Scintillation light in the UV
- PMTs and APDs have bad efficiency with UV
- Need to shift wavelength in the visible spectrum
- Light collection useful for determination of the events t₀ (zposition)
- Also used for improving energy resolution

Fig. 2. Emission spectra of α -particle excited (a) Ar and (b) Xe in several states of aggregation.

Light collection

- Looking for different methods and geometry
- Use of wavelength shifting material (TPB)
- Refletors coated with TPB for collection efficiency
- TPB doped (or coated) light guides
- APDs

Barium tagging

 Detection of the ¹³⁶Ba⁺⁺ reaction product would be a powerfull decriminator from background events

136
Xe -> 136 Ba⁺⁺ + e⁻ + e⁻

- A cryostat able to liquify ~100 kg of xenon arrived in Bern before Christmas (collaboration with EIVD Yverdon)
- Various procedures for the single barium atom taggig have been proposed and will be tested in Bern.

What's next

- Optimise the drift/amplification fields
- Run at 10 bars
- Implement the reading of the scintillation light
- Instrument the cryostat and start the R&D for barium tagging