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Paul Scherrer Institut

600 MeV p cyclotron
p beam current: 2.2 mA 
1.3 MW: µ, πµ, πµ, πµ, π

UCN: n

PSI located in northern Switzerland is a large user lab with more than 2000 people working at the lab. We have a broad spectrum of user facilities
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UCN < 300neV  ~ 8m/s   ~  3 mK ! 

Neutrons with Ekin < 300 neV 
can be stored

E. Fermi, 1946 , Ya. B. Zeldovich 
Sov. Phys. JETP 9, 1389 (1959)

Material optical potential

vn

VF=mvC2/2

storage properties are
material dependent

What are Ultra Cold Neutrons ?

UCN are neutrons which can be confined in material or magnetic bottles for the times comparable with a neutron life time of 15 minutes.The fact that they can be stored is a consequence of   they properties.Of course as a massive, neutral hadrons they are affected by all  types of  forces except electric.  For storage properties of UCN epecially strong and magnetic forces are important. Strong forcesWhich interacts between nucleus and neutron are described by fermii potential. For typicalMaterials used in UCN physisc fermi potential is about 300 neV. This means that UCN belowThis energy are totally reflected from the material and thus can be stored in material bottles.Neutron posses a magnetic dipol moment which interacts with magnetic field.The potenctial isEqual 60 neV per tesla. That is how we can trap UCN. Additionaly UCN can only riseAbout 3 m in height against the pull of gravity, which means we do not have to close the bottles.   Why do we need UCN?
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Superthermal UCN 
Production

CN UCN

Cooling machine = phonon pump

Different moderators possible
In our case 30 L solid D2

Cold Neutron to UCN conversion in one collision
Phonon-downscattering, i.e. lattice interaction
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pulsed
1.3 MW p-beam
600 MeV, 2.2 mA,
1% duty cycle

spallation target (Pb/Zr)
(~ 10 neutrons per proton)

heavy water moderator
→ thermal neutrons

cold UCN-converter
30 dm3 solid D2 at 5 K

DLC coated
UCN storage volume
height 2.5 m, ~ 2 m3

ρρρρUCN ~ 2000 cm-3 opening for
neutron guides

UCN shutter

thermal
shield (80K)

PSI UCN Source Schematic 

tank
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p-beam

lead
spallation
target

sD2

EXP2

R&D

DLC coated
UCN 
storage
volume

separated
locations for 
UCN production 
and storage

neutron guides
180 mm diameter

heavy water 
moderator

Spallation Means Violent Radiation!

heavy radiation shielding (concrete/iron)

EXP1
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Motivation

UCN-Production

First possibilities to measure
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Motivation

Put a small monitor detector
system in the hull of the UCN
shutter.
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Requirements
No big additional UCN losses, due to the monitor 
detector, i.e. it has to be small!
No big interference with ongoing construction
High radiation hardness (the storage volume is 
NOT a comfortable place, ~1017 n cm-2 per year)
Sensitive to UCN
As insensitive to gammas and fast neutrons as 
possible
Compatibility with high vacuum conditions
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Detector Concept

2 mm diameter
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Detector Concept
UCN detection via thin GS10 lithium-doped 
glass scintillator [1]

Transport the light via long light guides to a 
less harmful environment

Read-out of the scintillation light via GAPD

[1] G.Ban et al, J. Res. Natl. Inst. Stand. Technol. 110, 283-288 (2005)
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GS 10
100 µm thick Li Glass

Li6 + n -> alpha + triton + 4.8 MeV

Coated with a ~200nm thin-film of Al

2.98 mm
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Quartz Light Guides
F100 Quartz Rods from Heraeus

2 cm
1.6m
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GAPD
GAPD = Geiger Mode Avalanche Photo 
Diode Light

electron-hole pair



Leonard Göltl 15CHIPP PhD Winter School 2010

First UCN Tests

No light guides used!
Scintillator directly coupled to G-APD
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Light Loss Due To Guide
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Second UCN Test
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Irradiation Tests
We irradiated scintillator, G-APD, and quartz 
in the PSI neutron irradiation facility.
Quartz is unaffected by even the highest 
dose we used (1018 n/cm2)
GS10 fails after irradiation with >1016 n/cm2.
The Diode suffers from radiation quite 
quickly!

We decided to move it further away and shield it 
with Lithium.
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Irradiated Samples
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Setup For The Source

4m

G-APD
Light Guide Scintillator

Li Shielding
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In Place
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Movie
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Outlook
DAQ development
Development of a detection system with 
crude energy resolution. 
Installation at the source.
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Thanks for your attention!
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Outlook

Scintillator

Different Coatings
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Geometrical 
Consideration

Calculations of the solid angle:
ndiode=1.43 nScintillator=1.55   nquartz= 1.55 
θc(diode)= 67.31° θc(guide) = 40.18 °

2π(1-cos(67.31))
=3.86

2π(1-cos(90-40.18))
=2.23

2.23/3.86=57.8%

Quartz has 4mm diameter, the GAPD only 3mm
-> (22* π/3*3)*2.23/3.86=42%


