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Distances

The radius of the earth ≃ 6000km
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Distances

The solar sytem ≃ 7 × 109km (≃ 50au)
1 au ≃ 150 × 106km is the mean distance between earth and sun.
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Distances

The (visible part of the) milky way ≃ 1018km ≃ 30′000parsec
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Distances

The (luminous part of the) milky way ≃ 1018km ≃ 30′000parsec

1′′ = 1o/3600 = 1arc second

1parsec ≃ 3.26 light years
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Distances

The size of the observable Universe (Hubble scale) ≃ 4000Mpc = 4 × 109parsec
(Contains about 1011 galaxies like the milky way)

Each point is a galaxy
(Sloan digital sky survey, SDSS)
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The Universe is expanding

Newtonian gravity is attractive, each mass attracts every other mass.
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The Universe is expanding

Newtonian gravity is attractive, each mass attracts every other mass.
Nevertheless, observations show that the Univers is expanding. Galaxies fly apart with
a speed which is proportional to their distance,

v = ȧ = H0 · a (Hubble law)

(Hubble 1932)
H0 ≃ 72km/s/Mpc
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The Universe is expanding

v = H0a, H0 ≃ (72 ± 7)km/s/Mpc, W. Freedman et al. 2003.
H0 = h100km/s/Mpc, h = 0.72 ± 0.07.
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The Universe is expanding

To determine the ’Hubble diagram’ we have to measure two quantities: the velocity and
the distance of distant galaxies.
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z =
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λe
= v/c , if z ≪ 1 .
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The Universe is expanding

To determine the ’Hubble diagram’ we have to measure two quantities: the velocity and
the distance of distant galaxies.

To determine the velocity one measures the redshift.

z =
λo − λe

λe
= v/c , if z ≪ 1 .

Measuring the redshift is relatively easy, but to measure distances is difficult. One
needs ’standard candles’ (or ’standard rulers’).

In cosmology, looking far means looking into the past.
(We see Andromeda as it has been 2 million years ago.)

A moment in the past can be parameterized by its redshift. z.

The expansion velocity of the Universe which is presently H0 ≃ 72km/s/Mpc has
been different in the past. We want to measure it as function of the redshift, H(z).
For this we have to measure the redshift z and the distance d of far away galaxies.
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Standard candles

The most powerful standard candles are supernovae type Ia.

(SN1994D)
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SNIa courbe de lumière

After correction by a ’stretch factor’ the maximum of the light curve, i.e. the maximal
luminosity is nearly identical for all supernovae.
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The expansion of the Universe accelerates
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An expanding Universe within Newtonian gravity

Consider a test mass m at the surface
of a sphere of homogeneous mass den-
sity ρ, expanding with velocity v .

m

M R

M = (4π/3)a3ρ
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we obtain

H2 +
K
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=
8πG

3
ρ

This is the Friedmann equation (1922).
It is valid also of the exterior of the sphere is filled homogeneously.
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An expanding Universe within Newtonian gravity

The density is diluted by the expansion

ρ =
M

4π
3 a3

, ρ̇ = −3ρ
ȧ
a
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This is the 2nd Friedmann equation (1922). It requires that expansion decelerates!
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ȧ
a

«2

+
K
a2

#

=
8πG

3
ρ̇ = −8πGρ

ȧ
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This is the 2nd Friedmann equation (1922). It requires that expansion decelerates!
Within general relativity these equations are somewhat modified:
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Here P is the pressure and Λ is a new constant, the cosmological constant.
In addition, K has a different interpretation. It is the curvature of space:

Ruth Durrer (Université de Genève) Dark Energy Ascona, January 19, 2010 16 / 37



An expanding Universe
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a−4 for radiation, w = 1/3
const. for a cosmological constant, w = −1
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An expanding Universe
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Deriving the first eqn and inserting ä from the second eqn. one also finds

ρ̇

ρ
= −3(ρ + P)

ȧ
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This last equation is easily solved if the equation of state parameter w = P
ρ

= constant.
Then

ρ ∝ a−3(1+w) =

8

<

:

a−3 for dust, w = 0
a−4 for radiation, w = 1/3
const. for a cosmological constant, w = −1

Inserting this in the Friedmann eqn. for K = 0 we find

a(t) ∝

8

<

:

t2/3 for dust, w = 0
t1/2 for radiation, w = 1/3
exp(Ht) for a cosmological constant, w = −1
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Accelerated expansion

We introduce the parameters

Ωm =
8πGρ

3H2
, ΩK = −

K
a2H2

, ΩΛ =
Λ

3H2
,

so that the first Friedmann eqn. becomes Ωm + ΩΛ + ΩK = 1 .

K > 0 (ΩK < 0): spherical space,

K < 0 (ΩK > 0): pseudo-sphere (saddle),

K = 0 (ΩK = 0): flat space.
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Accelerated expansion

Matter density, Ωm, and cosmological
constant, ΩΛ (dark energy).
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The expansion of the Universe is accelerated

Matter density and cosmological
constant
(Kessler et al. ’09).
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The expansion of the Universe is accelerated

If the pressure is very negative, P = wρ
with w < −1/3 one can have accel-
erated expansion without cosmological
constant. Such a component is called
dark energy. A cosmological constant
corresponds to dark energy with
w = −1.

The matter fraction and the parameter
w of the dark energy
(Kessler et al. ’09).
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Thermal History

In the past the Universe was not only much denser but also much hotter.

Age of the Universe: t0 ≃ 1.37 × 1010years.

Events.

Recombination
(electrons and protons
combine to neutral
hydrogen).
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Thermal History

In the past the Universe was not only much denser but also much hotter.

Age of the Universe: t0 ≃ 1.37 × 1010years.

Events.

Recombination
(electrons and protons
combine to neutral
hydrogen).

Nucleosyhthesis
(formation mainly of
helium,...)

Inflation ?
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The cosmic micro wave background (CMB): spectrum

Fixen et al. (1996) Nobel Prize 1978 pour Penzias et Wilson and 2006 for Mather

T0 = 2.728K ≃ −270.5oC
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The cosmic micro wave background: anisotropies

Smoot et al. (1999), Nobel Prize 2006
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The cosmic micro wave background: anisotropies

Hinshaw et al. (2008)
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The cosmic micro wave background: anisotropies

Reichhardt et al. (2008) ℓ = 200 corresponds to about 1o.
(This is roughly the double of the angular size of the full moon (and of the sun).)

⇒ ’acoustic peaks’. (θ ≃ 180o/ℓ)
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The cosmic micro wave background: anisotropies

The physical size of the patches which
correspond to acoustic peaks are stan-
dard rulers. Their size is fixed by the
age of the Universe at the moment of de-
coupling (recombination). The angle un-
der which they appear determines the dis-
tance to the surface of last scattering
(z = zdec ≃ 1100), d = r/θ.
The amplitude of the peaks is a measure
for the matter density, ρm ∝ ΩmH2

0 and
the difference in amplitude of even and
odd peaks relates directly the baryon den-
sity, ρb ∝ ΩbH2

0 .

Ωmh2 = 0.13 ± 0.006
Ωbh2 = 0.022 ± 0.002
ΩΛ = 0.73 ± 0.1
ΩK = 0 ± 0.02
More details in the student talk by
Marc Vonlanthen

r

d

θ
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The cosmological composition

Ruth Durrer (Université de Genève) Dark Energy Ascona, January 19, 2010 28 / 37



Evidence for dark energy

The supernovae distances⇒ H(z) (0 < z < 1.7)
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Evidence for dark energy

The supernovae distances⇒ H(z) (0 < z < 1.7)

The acoustic peaks in the CMB anisotropies (z = 1100)

The acoustic oscillations in the galaxy correlation function (BAO)
(z ≃ 0.2 z ≃ 0.35)
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Evidence for dark energy: baryon acoustic oscillations BAO

(Eisenstein et al. 2005)
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Evidence for dark energy

The supernovae distances ⇒ H(t) (0 < z < 1.7)

The acoustic peaks in the CMB anisotropies (z = 1100)

The acoustic oscillations in the galaxy correlation function (BAO)
(z ≃ 0.2 z ≃ 0.35)

Abundance of galaxy clusters ⇒ Ωm ≃ 0.3.
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The expansion of the Universe is accelerated
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Models for dark energy

Cosmological constant / vacuum energy
Fits most of the data but we do not understand its amplitude (fine tuning problem)
neither why it comes to dominate right now (coincidence problem).
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Models for dark energy

Quintessence
A scalar field φ can show so called ’tracker behavior’ so that it represents always a
small fraction of the radiation and matter background density. By ’some
mechanism’ it can come to dominate.

Ruth Durrer (Université de Genève) Dark Energy Ascona, January 19, 2010 34 / 37



Models for dark energy

Quintessence
A scalar field φ can show so called ’tracker behavior’ so that it represents always a
small fraction of the radiation and matter background density. By ’some
mechanism’ it can come to dominate.
Can reproduce the data if it behaves today nearly like a cosmological constant...

Ruth Durrer (Université de Genève) Dark Energy Ascona, January 19, 2010 34 / 37



Models for dark energy

Quintessence
A scalar field φ can show so called ’tracker behavior’ so that it represents always a
small fraction of the radiation and matter background density. By ’some
mechanism’ it can come to dominate.
Can reproduce the data if it behaves today nearly like a cosmological constant...

0.0 0.1 0.2 0.3 0.4 0.5

-1.5

-1.0

-0.5

0.0

SNe

BAO

CMB

ΩM

w w =
P
ρ

=
φ̇2

− 2V (φ)

φ̇2 + 2V (φ)

Ruth Durrer (Université de Genève) Dark Energy Ascona, January 19, 2010 34 / 37



Models for dark energy

Modification of general relativity at large distance, extra dimensions (DGP).
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Models for dark energy

Modification of general relativity at large distance, extra dimensions (DGP).

Backreaction: If structure formation leads to important modifications of the
geomety such that perturbation theory is no longer sufficient, this could modify the
redshift – distance relation...
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Conclusions

SN observations
Ten years after the discovery of accelerated expansion, observations of several
hundred supernovae confirm it strongly (more than 7σ).

Ruth Durrer (Université de Genève) Dark Energy Ascona, January 19, 2010 36 / 37



Conclusions

SN observations
Ten years after the discovery of accelerated expansion, observations of several
hundred supernovae confirm it strongly (more than 7σ).

Additional data
Other observations (CMB, BAO, ...) also require a dominant component with
strong netiative pressure.

Ruth Durrer (Université de Genève) Dark Energy Ascona, January 19, 2010 36 / 37



Conclusions

SN observations
Ten years after the discovery of accelerated expansion, observations of several
hundred supernovae confirm it strongly (more than 7σ).

Additional data
Other observations (CMB, BAO, ...) also require a dominant component with
strong netiative pressure.

Cosmological constant
A cosmological constant or vacuum energy which contributes about 75% of the
energy density of the Universe is in good agreement with all data.

Ruth Durrer (Université de Genève) Dark Energy Ascona, January 19, 2010 36 / 37



Conclusions

SN observations
Ten years after the discovery of accelerated expansion, observations of several
hundred supernovae confirm it strongly (more than 7σ).

Additional data
Other observations (CMB, BAO, ...) also require a dominant component with
strong netiative pressure.

Cosmological constant
A cosmological constant or vacuum energy which contributes about 75% of the
energy density of the Universe is in good agreement with all data.

Negative pressure
The dark energy must have large netative pressure P = wρ with w = −1 ± 0.2. It
comes to dominate at a redshift of about z ≃ 0.4 before roughly 4 billion years.

Ruth Durrer (Université de Genève) Dark Energy Ascona, January 19, 2010 36 / 37



Conclusions

SN observations
Ten years after the discovery of accelerated expansion, observations of several
hundred supernovae confirm it strongly (more than 7σ).

Additional data
Other observations (CMB, BAO, ...) also require a dominant component with
strong netiative pressure.

Cosmological constant
A cosmological constant or vacuum energy which contributes about 75% of the
energy density of the Universe is in good agreement with all data.

Negative pressure
The dark energy must have large netative pressure P = wρ with w = −1 ± 0.2. It
comes to dominate at a redshift of about z ≃ 0.4 before roughly 4 billion years.

Ruth Durrer (Université de Genève) Dark Energy Ascona, January 19, 2010 36 / 37



Conclusions

Dark value
All estimates of the vacuum energy from quantum field theory give results which
are many orders of magnitude larger than the measured value.
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