Neutrino Oscillations: Current phenomenology

Eligio Lisi INFN, Bari, Italy The discovery of flavor oscillations has raised the level of interest in neutrino physics, at the level of ~10³ papers/year titled "...neutrino(s)..." on SPIRES

* Apparent drop in 2008 is not really a sign of decline (SPIRES counts saturate only after ~2 yrs).

Many experiments contributed to a rich phenomenology

[Particle Data Group 2009]

Their 3v interpretation can be summarized in just one slide (here, with 1 digit accuracy). Flavors = 2 11 T

$$\begin{split} \delta m^2 &\sim 8 \times 10^{-5} \text{ eV}^2 & \sin^2 \theta_{12} \sim 0.3 \\ \Delta m^2 &\sim 3 \times 10^{-3} \text{ eV}^2 & \sin^2 \theta_{23} \sim 0.5 \\ m_\nu &< O(1) \text{ eV} & \sin^2 \theta_{13} < \text{few}\% \\ \text{sign}(\pm \Delta m^2) \text{ unknown} & \delta \text{ (CP) unknown} \end{split}$$

We shall now examine how such information is (being) constrained from the following types of experiments:

- Short-baseline reactor
- Atmospheric
- Long-Baseline accelerator
- Solar
- Long-baseline reactor
- Short-baseline accelerator

For each type of experiment we shall briefly discuss:

- Production
- Detection
- Results
- Interpretation

The short-baseline reactor experiment CHOOZ

 $\sim 1 \text{ km} \rightarrow$

5 6 6 6 6 optical barrier veto steel tank containment neutrino region target acrylic vessel low activity gravel shielding 0 4 5 6 m 2 3

Production

Reactors: Intense sources of anti- v_e (~6x10²⁰/s/reactor)

Typically, 6 neutron decays to reach stable matter from fission:

~200 MeV per fission / 6 decays: Typical available neutrino energy is E~ few MeV

Detection

Expected spectrum (no oscill.):

With oscillations (qualitative):

CHOOZ: no oscillations within few % error

Atmospheric neutrinos: The Super-Kamiokande breakthrough

(T. Kajita at Neutrino'98, Takayama)

Production

Cosmic rays hitting the atmosphere can generate secondary (anti)neutrinos with electron and muon flavor via meson decays.

Primary flux affected by large normalization uncertainties...

... but (anti)neutrino flavor ratio ($\mu/e \sim 2$) robust within few %

Moreover: same v flux from opposite solid angles (up-down symmetry)

[Flux dilution $(~1/r^2)$ is compensated by larger production surface $(~r^2)$]

Should be reflected in symmetry of event zenith spectra, if energy & angle can be reconstructed well enough

Detection in SK

Parent neutrinos detected via CC interactions in the target (water). Final-state μ and e distinguished by \neq Cherenkov ring sharpness. (But: no charge discrimination, no τ event reconstruction). Topologies:

RESULTS SK zenith distributions

- SGe Sub-GeV electrons
- MGe Multi-GeV electrons
- SGµ Sub-GeV muons
- MGµ Multi-GeV muons
- USµ Upward Stopping muons
- UTµ Upward Through-going muons

Observations over several decades in L/E: v_e induced events: ~ as expected v_μ induced events: disappearance from below

Interpretation in terms of oscillations: Channel $v_{\mu} \rightarrow v_{e}$? No (or subdominant) \leftarrow CHOOZ OK! Channel $v_{\mu} \rightarrow v_{\tau}$? Yes (dominant)

One-mass-scale approximation (for $\theta_{13}=0$):

$$\mathsf{P}_{\mu\tau} = \sin^2(2\theta_{23}) \sin^2(\Delta m^2 L/4E_{\nu})$$

[In this channel, oscillations are ~vacuum-like, despite the presence of Earth matter]

Results consistent with other atmos. expts. using different techniques (MACRO, Soudan2) but with lower statistics

Dedicated L/E analysis in SK "sees" half-period of oscillations

1st oscillation dip still visible despite large L & E smearing

Strong constraints on the parameters $(\Delta m^2, \theta)$

Latest SK dataset include hundreds of bins (Shiozawa, Erice 2009):

[L/E evidence for half-cycle also improved.]

Long-baseline neutrino experiments (K2K, MINOS, OPERA)

"Reproducing atmospheric v_{μ} physics" in controlled conditions

Production (e.g., MINOS)

 π decay: ν energy is only function of $\nu\pi$ angle and π energy

(Far) Detection

K2K: Cherenkov technique in SK

MINOS: Steel/Scintillator detector (+ magnetic field)

K2K & MINOS supplemented by near detectors to measure disappear. Puu

Results (muon neutrino disappearance mode)

1st oscillation dip observed.

[Exotic explanations without dip (decay, decoherence) disfavored]

Interpretation

Once more... dominant $P_{\mu\tau} = \sin^2(2\theta_{23}) \sin^2(\Delta m^2 L/4E_{\nu})$ Oscillation parameters consistent among experiments

[But: lower-statistics muon <u>antineutrino</u> data in MINOS (2009) somewhat off. Too early to claim CPT violation anyway...]

Testing dominant oscillations via τ appearance: **OPERA**

Finding needles in a haystack...

Best wishes for finding 1st "T needle" in 2010 data analysis!

More refined (3v) interpretation

Go beyond dominant $P_{\mu\tau} = \sin^2(2\theta_{23}) \sin^2(\Delta m^2 L/4E_{\nu})$ Include subleading oscillations in vacuum and matter. Interesting (small) effects emerge. [See e.g. hep-ph/0506083]

Testing subdominant θ_{13} effects via e appearance: **MINOS**

Small electron excess found in $P_{\mu e}$ oscillation channel Best fit for $\theta_{13} \neq 0$, but still low statistical significance. 3v probability: constraints depend on δ and hierarchy

Expect interesting MINOS updates!

Experiments sensitive to the "small" δm^2 :

Solar neutrinos

The Sun seen with neutrinos (SK)

Production

Detection

Radiochemical: count the decays of unstable final-state nuclei. (low energy threshold, but energy and time info lost/integrated)

$${}^{37}\text{Cl} + \nu_e \rightarrow {}^{37}\text{Ar} + e \quad (\text{CC}) \qquad \text{Homestake}$$

$${}^{71}\text{Ga} + \nu_e \rightarrow {}^{71}\text{Ge} + e^- \quad (\text{CC}) \qquad \text{GALLEX/GNO, SAGE}$$

Elastic scattering: events detected in real time with either "high" threshold (Č, directional) or "low" threshold (Scintillators)

 $v_x + e^- \rightarrow v_x^- + e^-$ (NC,CC) SK, SNO, Borexino

Interactions on Deuterium: CC events detected in real time; NC events separated statistically + using neutron counters.

$$v_e + d \rightarrow p + p + e^-$$
 (CC)

$$v_x + d \rightarrow p + n + v_x$$
 (NC)

SNO (Sudbury Neutrino Observatory)

Results

All CC-sensitive results indicated a v_e deficit...

... as compared to solar model expectations

Interpretation

In the "past millennium": Oscillations? Maybe, but...

- large uncertainties in the parameter space or solar model
- no unmistakable evidence for flavor transitions ("smoking gun")

But, in 2002 ("annus mirabilis"), one global solution was finally singled out by combination of data ("large mixing angle" or LMA).

For LMA parameters, evolution is adiabatic in solar matter.

In the Earth: small day/night (D/N) effects, not yet seen.

crucial role played by Sudbury Neutrino Observatory:

The breakthrough: in deuterium one can separate CC events (induced by v_e only) from NC events (induced by v_e, v_μ, v_τ), and double check via Elastic Scattering events (due to both NC and CC)

$$\begin{array}{ll} \mathrm{CC}: & \nu_e + d \to p + p + e \\ \mathrm{NC}: \nu_{e,\mu,\tau} + d \to p + n + \nu_{e,\mu,\tau} \\ \mathrm{ES}: \nu_{e,\mu,\tau} + e \to e + \nu_{e,\mu,\tau} \end{array}$$

$$\frac{\text{CC}}{\text{NC}} \sim \frac{\phi(\nu_e)}{\phi(\nu_e) + \phi(\nu_{\mu,\tau})}$$

$$\frac{\mathrm{CC}}{\mathrm{NC}} < 1 \; \Rightarrow \; \phi(\nu_{\mu,\tau}) > 0 \; \Rightarrow \; \nu_e \to \nu_{\mu,\tau}$$

CC/NC ~ 1/3 < 1</td>"Smoking gun" proof of flavor change. Solar model OK!CC/NC ~ Pee ~ $sin^2\theta_{12}$ (LMA) ~1/3 < $\frac{1}{2}$ Evidence of: mixing in first octant + matter effects

thus:

Very recent, direct confirmation of Pee adiabatic pattern of LMA solution in a single solar neutrino experiment: BOREXINO at Gran Sasso

Also in 2002... KamLAND: 1000 ton mineral oil detector, "surrounded" by nuclear reactors producing anti- v_e . Characteristics:

A/ $\delta m^2 \ll 1$ in Earth crust (vacuum approxim. OK) L~100-200 km E_v~ few MeV

⇒

With previous $(\delta m^2, \theta)$ parameters it is $(\delta m^2 L/4E) \sim O(1)$ and reactor neutrinos should oscillate with large amplitude (large θ)

KamLAND results

2002: electron flavor disappearance observed

2004: half-period of oscillation observed

2007: one period of oscillation observed

Direct observation of δm^2 oscillations

Interpretation

 $(\delta m^2, \theta_{12})$ - complementarity of solar/reactor neutrinos

More refined (3v) interpretation

Go beyond dominant 3v oscillations. Include subleading effects due to θ_{13} and averaged Δm^2 oscillations in vacuum/matter.

Interesting (small) effects emerge. [See arXiv:0806.2649].

A hint of θ_{13} , o arises from slight tension on θ_{12} (solar vs KamLAND) and from different correlation bewteen mixing angles, related to different relative signs in P_{ee} (survival probability) of solar vs KamLAND:

Slight "tension" on θ_{12} can be reduced for θ_{13} >0

Thus, there seems to be a few independent hints of θ_{13} >0 :

Combining all data (with some optimism), the grand total is:

 $\sin^2\theta_{13} \approx 0.02 \pm 0.01$ (all data) arXiv:0905.3549

which is an encouraging 2σ indication, testable in the next few years. (N.B.: MINOS, SK, SNO, KamLAND can still provide further improvements)

 θ_{13} determination essential for further progress in terrestrial oscillation searches (CP violat., matter effects, mass hierarchy)

Also: very important to restrict theoretical models for v masses

E.g.: CH Albright, 2008, "distribution" of published predictions

Synopsis of neutrino mass² and mixing parameters: central values and n- σ ranges from global 3v analysis

TABLE I: Global 3ν oscillation analysis (2008): best-fit values and allowed n_{σ} ranges for the mass-mixing parameters.

Parameter	$\delta m^2/10^{-5}~{ m eV}^2$	$\sin^2\theta_{12}$	$\sin^2 heta_{13}$	$\sin^2 heta_{23}$	$\Delta m^2/10^{-3}~{ m eV}^2$
Best fit	7.67	0.312	0.016	0.466	2.39
1σ range	7.48 - 7.83	0.294 - 0.331	0.006 - 0.026	0.408 - 0.539	2.31 - 2.50
2σ range	7.31 - 8.01	0.278 - 0.352	< 0.036	0.366 - 0.602	2.19 - 2.66
3σ range	7.14 - 8.19	0.263 - 0.375	< 0.046	0.331 - 0.644	2.06 - 2.81

arXiv:0805.2517

Short baseline accelerator expts: Beyond 3 neutrinos?

The LSND experiment found a signal of possible $v_{\mu} \rightarrow v_{e}$ oscillations at a relatively high ΔM^{2} scale of $O(0.1-1) eV^{2}$

Large literature on attempts to reconcile LSND with other data, by using new (sterile) neutrino states and/or new neutrino interactions. No satisfactory model emerged so far. Moreover...

... simplest LSND "oscillations" excluded by a dedicated test experiment, MiniBoone:

But, the MiniBoone data have some new, unexplained anomalies at low energy!

So the LSND/MiniBoone saga may have not yet ended ...

Anyway, it's fair to say that there is no convincing indication of new neutrino states, oscillations or interactions beyond the standard 3nu scenario

SUMMARY (Flavors = $\mathcal{O} \mid \mathbf{\mu} \mid \mathbf{\tau}$)

