2

INTERACTIONS OF RADIATION WITH MATTER

PROBABILITY OF PRIMARY ELECTROMAGNETIC INTERACTION WITH MATTER

BETHE-BLOCH EXPRESSION

$$-\frac{dE}{dx} = 2\pi N_a r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \left(\frac{2m_e \gamma^2 v^2 W_{MAX}}{I^2} \right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right]$$

r_a: classic electron radius 2.817 10⁻¹³cm

m_e: electron mass

N_a: Avogadro number 6.022 10²³ mol⁻¹

I : average ionization potential

Z, A: atomic number and mass of target

 ρ : target density

z: particle charge in units of e

 β : v/c of particle

 γ : $1/\sqrt{(1-\beta^2)}$

 $\boldsymbol{\delta}\,$: density correction

C: shell correction

W_{MAX}: maximum energy transfer in a collision

Fabio Sauli - CHIPP Winter School 2010

z=1 particles

Reduced units:

$$\frac{dE}{d\chi} = \frac{1}{\rho} \frac{dE}{dx}$$
 \rho: density

$$\chi(g\,cm^{-2}) = \rho(g\,cm^{-3})\,l(cm)$$

In composite materials:

$$\frac{dE}{dx} = \sum p_i \left| \frac{dE}{dx} \right|_i$$

p_i: fraction of material i

Review of Particle Physics, Physics Letters B667 (2008) 1

http://pdg.lbl.gov/

CREATION OF ELECTRON-ION PAIRS

Primary ionization probability:

$$P_k^n = \frac{n^k}{k!} e^{-n}$$
 k: actual number

Total ionization probability (Landau expression):

$$f(\lambda) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\lambda + e^{-\lambda})}$$

$$\lambda = \frac{\Delta E - \Delta E_{MP}}{\xi} \quad \xi = K \frac{Z}{A} \frac{\rho}{\beta^2} x$$

Average total ionization:

$$N = \frac{\Delta E}{W_i}$$
 ΔE : energy loss W_i : average energy per ion pair

TOTAL IONIZATION ENERGY LOSS

G. Igo et al, Phys. Rev. 89(1953)879

H. Kanter, Phys. Rev. 121(1961)461

Fabio Sauli - CHIPP Winter School 2010

ENERGY LOSS IN SEMICONDUCTORS (MINIMUM IONIZING PARTCLES)

MATERIAL	Z	ρ (g cm ⁻³)	W _i (eV)	dE/dx (MeV g ⁻¹ cm ²)	dE/dx (MeV cm ⁻¹)
Silicon	14	2.34	3.6	1.6	3.7
Germanium	32	5,32	2.96	1.4	7.5

Z: charge ρ : density W_i average ionization energy

Average number of ion pairs:

$$n = \frac{\Delta E}{W_i} = \frac{dE/dx}{W_i} s$$

For silicon, 300 µm thick:

n ~ 30,000 electron-hole pairs or

$$\Delta q = n \times 1.6 \times 10^{-19} C = 4.8 \ fC$$

Fabio Sauli - CHIPP Winter School 2010

DELTA ELECTRON PRODUCTION PROBABILITY AND RANGE IN SILICON

C. Damerell, RAL 86-77(1986)

POSITION ERROR AS A FUNCTION OF THICKNESS IN SILICON DETECTORS (PERPENDICULAR MIPS)

C. Damerell, Nucl. Instr. and Meth. 226(1984)26

MAIN PARAMETERS:

C. Amsler et al, Review of Particle Physics Physics Letters B667 (2008) 1

Gas	Density, mg cm ⁻³	E_x eV	$_{ m eV}^{E_I}$	W_I eV	$dE/dx _{\min}$ keV cm ⁻¹	$\frac{N_P}{\mathrm{cm}^{-1}}$	$\frac{N_T}{\mathrm{cm}^{-1}}$
Ne	0.839	16.7	21.6	30	1.45	13	50
Ar	1.66	11.6	15.7	25	2.53	25	106
Xe	5.495	8.4	12.1	22	6.87	41	312
CH_4	0.667	8.8	12.6	30	1.61	37	54
C_2H_6	1.26	8.2	11.5	26	2.91	48	112
iC_4H_{10}	2.49	6.5	10.6	26	5.67	90	220
CO_2	1.84	7.0	13.8	34	3.35	35	100
CF_4	3.78	10.0	16.0	54	6.38	63	120

PRIMARY IONIZATION:

Minimum ionizing particles in Argon NTP:

dE/dx: 2.4 keV/cm n_p : 25 ion pairs/cm

Detection efficiency: $\varepsilon = 1 - P_0^n = 1 - e^{-n}$

Thickness: s (mm) ε (%)
1 91.8
2 99.3

TOTAL IONIZATION:

Total number of ion pairs:
$$n_T = \frac{\Delta R}{W_T}$$

$$\Delta E = 2.4 \text{ keV/cm}$$
 $w_i = 26 \text{ eV}$ $n_T \approx 90 \text{ ip/cm}$

 $\frac{n_T}{n_P} \approx 3$

PROGRAM HEED: NUMBER OF PRIMARY INTERACTIONS (CLUSTERS) IN GASES AT STP

I. B. Smirnov, Nucl. Instr. and Meth. A554(2005)474

http://consult.cern.ch/writeup/heed/

EXPERIMENTAL CLUSTER SIZE PROBABILITY:

H. Fischle et al, Nucl. Instr. and Meth. A301 (1991) 202

APPROXIMATE EXPRESSIONS

Number of electrons with energy larger than E_0 : (first term of Bethe-Block)

$$N(E \ge E_0) \cong \frac{W}{E_0}$$
 $W = K \frac{Z}{A} \rho x$ $K = 0.154 \text{ MeV cm}^2/\text{g}$
 $\rho: \text{density (g/cm}^3)$

$$K=0.154 \text{ MeV cm}^2/\text{g}$$

 ρ : density (g/cm³)

x: material thickness (cm)

ELECTRON RANGE IN GASES AT STP:

$$R \approx \frac{1}{\rho} 10 E^{1.7}$$

R: range in cm

E: electron energy in keV

 ρ : density in μg cm⁻³

F. Sauli, Nucl. Instr. and Meth. 156 (1978) 147

CONSEQUENCES OF DELTA ELECTRON STATISTICS

DIFFERENTIAL ENERGY LOSS RESOLUTION:

I. Lehraus et al, Phys. Scripta 23(1981)727

POSITION ACCURACY (CENTER OF GRAVITY):

G. Charpak et al, Nucl. Instr. and Meth. 167 (1979) 455

PHOTON ABSORPTION

x: material thickness (cm)

l: linear absorption length (cm)

 $\chi = x \rho$: reduced thickness (g cm⁻²)

 $\mu = 1/(l\rho)$: mass absorption coefficient (cm² g⁻¹)

 σ : cross section (cm²)

N: molecules cm⁻³

 N_0 = 6.0247 10²³ molecules/gmole

A: atomic or molecular mass

 ρ : density (g cm⁻³)

INTERACTION PROCESSES

PHOTOELECTRIC: Interaction with an electronic shell with emission of a photoelectron. The excited atom/molecule returns to ground state through fluorescence or radiation-less (Auger) process.

COMPTON: Scattering of the photon by quasi-free electrons; can be coherent or incoherent

PAIR PRODUCTION: Conversion in a e^+e^- pair in the field of the atom/molecule. Possible for $E_g > 2$ $m_e = 1.022$ MeV

PHOTON ABSORPTION CROSS SECTION FOR TUNGSTEN

A. Thompson et al, X-RAY DATA BOOKLET (2001)

http://xdb.lbl.gov/

Absorption tables for atoms and molecules:

http://henke.lbl.gov/optical constants/

http://physics.nist.gov/PhysRefData/FFast/html/form.html

Fabio Sauli - CHIPP Winter School 2010

PHOTOELECTRIC EFFECT

WORK FUNCTION:

Minimum photon energy required to remove an electron from a solid (lower than the first ionization potential)

Element	W (eV)	I (eV)
Ag	4.52-4.74	7.57
Au	5.1-5.47	9.22
Al	4.06-4.26	5.99
Fe	4.67-4.81	7.87
Na	2.36	5.14
Li	2.93	5.39
Cs	2.14	3.89

PHOTOIONIZATION THRESHOLD AND QUANTUM EFFICIENCY OF MULTIALKALI

Compound	W (eV)	Max QE (%)
SbCs	1.8	16
SbNaKCs	1.45	20
SbKCs	1.98	26

ELECTRON EMISSION FROM PHOTOCATHODES (IN VACUUM)

BIALKALI PHOTOCATHODES (VISIBLE LIGHT)

QUANTUM EFFICIENCY OF Cs₃Sb

W. E. Spicer, Phys. Rev. 112(1958)114

UV PHOTONS CAESIUM IODIDE QUANTUM EFFICIENCY

CHERENKOV RING IMAGING

ATOMIC GASES:

H. S. W. Massey, Electronic and Ionic impact Phenomena (Oxford Press 1969)

G. Marr, Photoionization Processes in Gases (Academic Press NY 1967)

MOLECULAR GASES:

Fabio Sauli - CHIPP Winter School 2010

PHOTOIONIZATION IN GASES

TOTAL AND PHOTOIONIZATION CROSS SECTIONS:

For a photon energy E_{γ} above the photoionization threshold E_{I} the absorption can result in the emission of a photoelectron with energy equal to the difference:

$$E_e = E_{\gamma} - E_I$$

The quantum efficiency (QE) is the ratio between the probability of photoelectron emission and total absorption.

	$E_{I}(eV)$
C_6H_6	9.3
TEA	7.45
TMAE	5.6

TEA: Triethylamine $(C_2H_5)_3N$ TMAE: Tetrakis-dimethylamino ethylene $[(CH_3)_2N]_2C$

PHOTOIONIZATION CROSS SECTION IN XENON

Fabio Sauli - CHIPP Winter School 2010

ABSORPTION LENGTH FOR GASES AT NTP

For gases at STP (0°C, 1 Atm): N=2.687 10¹⁹ cm⁻³

Absorption length:

$$\lambda(cm) = \frac{1}{26.87 \,\sigma(MBarns)}$$

The mass absorption coefficient for molecules:

$$\mu_M = \frac{N_0}{M} \sum_i n_i \sigma_i$$

M: molecular weight n_i , σ_i : atoms, cross section type i

Fabio Sauli - CHIPP Winter School 2010

PHOTOELECTRIC FLUORESCENCE YIELD

An excited atom returns to the ground state with a cascade of internal transitions that can be radiative (with the emission of photons) or non-radiative:

RADIATIVE:

NON-RADIATIVE (AUGER):

The fluorescence yield is the ratio of radiative to total transitions, and increases with the atomic number:

FLUORESCENCE YIELD =
$$\frac{N_{FL}}{N_{FL} + N_{NR}}$$

M. O. Krause, J. Phys. Chem. Ref. Data 8 (1979) 307

FLUORESCENCE PHOTONS FATE

Fluorescence photons can convert far from the primary interaction, or escape from the sensitive volume (escape peak):

X-RAY ABSORPTION SPECTRUM ⁵⁵Fe X-Rays (5.9 keV) in Argon:

Fabio Sauli - CHIPP Winter School 2010

COMPTON EFFECT

Scattering of the photon on a quasi-free electron of electronic shells

$$E_e = E_0 - E_1$$

$$\cos \theta = 1 - m_e c^2 \left(\frac{1}{E_1} - \frac{1}{E_0} \right)$$

$$\cot \phi = \left(1 + \frac{E_0}{m_e c^2}\right) \tan \frac{\theta}{2}$$

Arthur Holly Compton Nobel Laureate in Physics 1927

DIFFERENTIAL CROSS SECTION FOR SCATTERING AT AN ANGLE θ FOR SEVERAL PHOTON ENERGIES:

COMPTON SCATTERING: ANGLE-ENERGY CORRELATIONS

R. D. Evans, Compton Effect Handbuch der Physik 34 p. 218 (Springer Verlag 1958)

DOUBLE COMPTON SCATTERING

Measurement of recoil electrons energy and position in two cascades detectors allows to define a circle of origin for the source; intersection of many events provides the source position:

Fabio Sauli - CHIPP Winter School 2010

HIGH ENERGY: PAIR PRODUCTION

For $E_{\gamma} > 2$ m_e the photon can create an electron-positron pair; the cross section increases very fast with energy.

ENERGY SHARING BETWEEN e⁺ and e⁻

(Photon energy in terms of electron rest energy 0.511 MeV)

C.M. Davisson and R.D. Evans, Rev. Modern Phys. 20(1948)305

ABSORPTION COEFFICIENT:

ELECTROMAGNETIC SHOWERS

SAMPLING CALORIMETERS:

HARD X-RAYS: CONVERTERS AND DETECTION IN GASES

THICK FOIL:

- HIGHER CONVERSION EFFICIENCY
- LOWER PHOTOELECTRON EXTRACTION EFFICIENCY

For 511 keV photons the 441 keV photoelectron (511-70) has a range in Tungsten of 150 μ m. The optimum thickness of the converter is around 100 μ m, \sim 1/100 of the absorption length, so the theoretical detections efficiency is \sim 1%.

DETECTION AND LOCALIZATION OF 511 keV PHOTONS

MULTILAYER CONVERTERS-GAS DETECTORS

GEANT4 Calculation by P. Fonte (Imaging 2006)

Fabio Sauli - CHIPP Winter School 2010

DETECTION OF NEUTRONS WITH GAS DETECTORS

Neutrons are detected through the products of their nuclear interaction with matter. Interaction cross sections depend on energy and material; possible reaction products are:

$$n + nucleus \longrightarrow \left\{ egin{array}{l} recoil \ nucleus \ proton \ alpha \ particle \ triton \ fission \ fragments \end{array}
ight.$$

TYPES OF DETECTORS:

• With thin converter foil, exploiting the reactions:

$${}_{5}^{10}B + n \rightarrow {}_{3}^{7}Li + \alpha$$
$${}_{3}^{6}Li + n \rightarrow {}_{1}^{3}H + \alpha$$

• With direct reaction on the gas (³He):

$$_{2}^{3}He + n \rightarrow _{1}^{3}H + p$$

The charged prongs are then detected by their ionization in the medium.

NEUTRON CROSS SECTIONS:

G. Knoll, Radiation Detection and Measurements (Wiley, New York 2000)

OPTICAL IMAGING CHAMBER FOR NEUTRON DETECTION

F.A.F. Fraga et al, Nucl. Instr. and Meth. A478 (2002) 357