A “vector finder” approach to track reconstruction in the Inner Tracking System of MPD/NICA

D.Zinchenko1, A.Zinchenko1, E.Nikonov2

1VBLHEP, JINR, Dubna, Russia
2LIT, JINR, Dubna, Russia
Outline

• Introduction
• Vector Finder approach
• Algorithm performance for Box and UrQMD generators
• TPC and ITS track matching
• Conclusion
MPD, TPC&ITS geometry

MPD/NICA general design scheme

TPC and ITS geometry

5-layer ITS geometry
ITS 3D hit picture

1000 track event with pt range 0.02 – 2.0 GeV/c
ITS hit projections

3D hit picture projections: transverse (left) and longitudinal (right)
Vector Finder – a prior - constrained combinatorial search method (combines hits with angular positions which can exist in actual particle tracks)
Track scheme with angles (longitudinal)

Example: Adding 3d layer hit to current track candidate (\textcolor{red}{red}). Angle delta epsth is preset. Area where possible hits are searched for, is highlighted with \textcolor{red}{red} and bordered with \textcolor{blue}{blue} lines.
Example: Adding 3d layer hit to current track candidate (red). Angles \textit{epsphi}, lower and upper, depend on momentum, which is estimated based on track curvature for track candidate. Area where possible hits are searched for, is highlighted with red and bordered with blue lines.
Algorithm steps

• Initial track candidates are built from hits on the first layer of detector

• For detector layers 2 – 5:
 1) Build hit multimap for longitudinal and transverse angles
 2) For each track candidate:
 • Estimate particle momentum pt if possible (layers 3-5)
 • Calculate longitudinal and transverse angle cuts and extract corresponding hits from multimaps
 • Find intersection of hit sets obtained after cuts
 • For each hit in the resulting hit set create track candidate for current detector layer
Angle delta dependencies on pt

- Left plot shows that delta between transverse angle on current layer and previous one is inversely proportional to particle transverse momentum, due to track curvature in the magnetic field
- Right plot shows that there is no such evident dependency for longitudinal angle delta, except some widening at low pt due to multiple scattering
Layer 2 – blue, Layer 3 – red
Layer 4 – green, Layer 5 – black
Transverse angle cuts

- Upper cut: $\eps = \pm 4.5e^{-3}/pt$
- Lower cut: $\eps = \pm 1.5e^{-3}/pt$
Event generators

Box – FairBoxGenerator of muons – μ^- and μ^+
500 μ^-, 500 μ^+ per event, P_t range from 0.02 to 2.0 GeV/c, polar angle from 40 to 140°

UrQMD – central Au+Au collisions at $\sqrt{s} = 9$ GeV
Efficiency dependence on Pt

Pt (good prim.)

Efficiency

Urqmd
Box

p_T, GeV/c

D. Zinchenko

23.10.2019
Coordinates of PCA versus Pt

Left – TPC (Kalman filter based approach)
Right – ITS (Vector Finder approach)

PCA – point of the closest approach to the interaction point
dPt/Pt (gauss fit) and dependence on Pt

dPt/Pt — relative transverse momentum resolution
(momentum reconstruction accuracy)
Efficiency dependency on Pseudorapidity

Eta of reco tracks (good prim.)

- Vector Finder (ITS)
- Kalman Filter (TPC + ITS)

Efficiency

Pseudorapidity
TPC and ITS track matching

TPC and corresponding ITS tracks at 150 MeV
1. Propagate TPC and ITS tracks to a cylinder at distance of 27.0 cm from beam line
2. Update track parameters and receive corresponding values of z and phi
3. For each ITS track find a set of TPC tracks with z and phi parameters lying in preset window of ITS track parameters
4. Matched track is created by adding ITS hits to TPC track if they are “good” (if ITS hit adds less than 10.0 to summary Chi2 value, it’s considered “good”)
5. If no TPC track was found within window, ITS track is added standalone
Checking track quality

Having more hits in final matched track is more valuable than having little Chi2, so we need quality function.

\[
qual = - \left(\text{hitnumber} + \frac{\min(\text{Chi2}, 100.0)}{101.0} \right)
\]

Where:
- \textit{hitnumber} is number of hits for matched TPC + ITS track
- \textit{Chi2} is for ITS-only track
Number of hits per track after matching

<table>
<thead>
<tr>
<th>htemp_1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>999</td>
</tr>
<tr>
<td>Mean</td>
<td>52.81</td>
</tr>
<tr>
<td>Std Dev</td>
<td>15.92</td>
</tr>
</tbody>
</table>
Some Matching results (2)

dz and $dphi$ on 27.0 cm radius cylinder from interaction point
Summary and next steps

- Stand-alone ITS track reconstruction using Vector Finder approach has been developed and implemented.

- It improves track reconstruction efficiency as compared with the TPC-based tracking.

- ITS significantly improves track position uncertainty near the interaction point.

- Combined ITS + TPC track reconstruction using track matching algorithm was implemented.

- Track reconstruction algorithm tuning for secondary particles is to be done next.
This work was supported by the Russian Foundation for Basic Research (RFBR): grant No. 18-02-40060