Study of 6He - d reactions at the ACCULINNA-2 separator

Bogumił Zalewski
ACCULINNA group, Flerov Laboratory of Nuclear Reactions, JINR
Heavy Ion Laboratory, University of Warsaw
OUTLINE

- Flerov Laboratory of Nuclear Reactions
OUTLINE

- Flerov Laboratory of Nuclear Reactions
- Research motivation
OUTLINE

- Flerov Laboratory of Nuclear Reactions
- Research motivation
- Experimental setup
- Beam quality
OUTLINE

- Flerov Laboratory of Nuclear Reactions
- Research motivation
- Experimental setup
- Beam quality
- Preliminary results
OUTLINE

- Flerov Laboratory of Nuclear Reactions
- Research motivation
- Experimental setup
- Beam quality
- Preliminary results
- Conclusions
FLEROV LABORATORY OF NUCLEAR REACTIONS
78% of ^6He
26 AMeV
10^5 pps
Two loosely bound nuclei

Why 6He And Deuterium?

Calculated differential cross section

- elastic scattering 7Li(d,d)7Li by C.M. Perey & F.G. Perey

2^+ state of 6He
Why 6He And Deuterium?

- Two loosely bound nuclei
- Extended spatial structure

Calculated differential cross section

- Elastic scattering 7Li(d,d)7Li by C.M. Perey & F.G. Perey

2+ state of 6He
Why 6He And Deuterium?

- Two loosely bound nuclei
- Extended spatial structure
- Comparison with 7Li(d,d)7Li and with 6He(p,p)6He

Calculated differential cross section

- elastic scattering 7Li(d,d)7Li by C.M. Perey & F.G. Perey

2+ state of 6He
Why ^6He And Deuterium?

- Two loosely bound nuclei
- Extended spatial structure
- Comparison with $^7\text{Li}(d,d)^7\text{Li}$ and with $^6\text{He}(p,p)^6\text{He}$
- Great opening for further studies - $d(^6\text{He},^5\text{H})^3\text{He}$ and $d(^6\text{He},^7\text{He})p$
Why 6He And Deuterium?

- Two loosely bound nuclei
- Extended spatial structure
- Comparison with 7Li(d,d)7Li and with 6He(p,p)6He
- Great opening for further studies - d(6He,5H)3He and d(6He,7He)p
- No data yet

Calculated differential cross section

- Elastic scattering 7Li(d,d)7Li by C.M. Perey & F.G. Perey

2+ state of 6He
No agreement on 2nd excited state energy level

SEARCH FOR 2ND EXCITED STATE OF 6He

- No agreement on 2nd excited state energy level
- Possibility to obtain spectrum of excited states

dE-E in the Right Telescope
dE-E in the Right Telescope
dE-E in the Right Telescope

ΔE – E plot in right telescope

Energy loss in Si [MeV]

Energy loss in CsI [arb. units]
DEUTERIUM IDENTIFICATION

\[\Delta E - E \text{ in coincidence with } He \]
Angle-Angle relation for elastic scattering
Angle-Angle relation for elastic scattering
Angle-Angle relation for elastic scattering
COUNTS PER ANGLE

![Diagram showing the counts per angle with data points for different angle ranges.]
CONCLUSIONS

- Clean beam with high intensity (higher soon!)
- Early results in agreement with theoretical predictions
- ACCULINNA 2 group ready for future, more complicated experiments
BEAM COMPOSITION

2H - 0.11%
4He - 0.06%
7Li - 0.15%
8Li - 18%
9Be - 1%
3H - 2%
6He - 78%
COINCIDENCE WITH 4He

Left telescope coincidences with 4He
Angle-Angle relation in coincidence with 4He

2H angle [deg]

4He angle [deg]
COINCIDENCE WITH 4He

Left telescope coincidences with 4He
Angle-Angle relation in coincidence with ^4He

^2H angle [deg] vs. ^4He angle [deg]
COINCIDENCE WITH ^4He
Angle-Angle relation in coincidence with ^4He