Non-standard GEM foils for the gaseous detectors

Magdalena Kuich

III NICA Days 2019 4th MPD Collaboration Meeting October 21-25 2019

Standard Gas Electron Multiplier

FACULTY OF PHYSICS

M. Cortesi:

– thin $(50\mu m)$ metal-coated polymer (Kapton) foil chemically pierced by a high density of holes

Sauli, NIMA 386 (1997) 531

- High rate (up to 1 MHz/mm²)
- High Spatial Resolution (\approx 40 μ m)
- \bullet High gas gain ($\sim 10^3-10^4$ single-stage, 10^6-10^7 multi-stage)
- 15-20% energy resolution (5.9 keV X-rays)
- Flexible detector shape and readout patterns

NICA Days, October 21-25 2019

GEM-based Optical Time Projection Chamber

for exotic nuclei decays study

M. Ćwiok et al., IEEE TNS 52 (2005) 2895 K. Miernik et al., NIMA 581 (2007) 194

GEM-based Optical Time Projection Chamber for exotic nuclei decays study

Example reconstruction of 2p decay event of ⁴⁵Fe:

K. Miernik et al., Phys. Rev. Lett. 99, 192501

CCD

GEM-based Optical Time Projection Chamber for exotic nuclei decays study

Example reconstruction of 2p decay event of ⁴⁵Fe:

K. Miernik et al., Phys. Rev. Lett. 99, 192501

Several TPCs with optical readout constructed since 2004 for:

- two-proton radioactivity 2p of ⁴⁵Fe and ⁴⁸Ni @ NSCL/MSU 2p of ⁵⁴Zn @ BigRIPS/RIKEN
- β -delayed multi-particle emissions β 3p of ³¹Ar @ FRS/GSI β p of ^{59,60}Ge @ NSCL/MSU β p of ¹¹Be @ Isolde/CERN β p of ²⁷S @ Acculinna/JINR β -multi-p of ^{22,23}Si @ MARS/TAMU
- rare decays of He isotopes $^{6}\text{He} \rightarrow \alpha + \text{d}$ @ Isolde/CERN $^8{
 m He}
 ightarrow lpha + {
 m t+n}$ @ Acculinna/JINR

537

GEM-based Active Gas Target TPC for nuclear reactions at astrophysical energies

Physics goals:

- study (α, γ) and (p, γ) reactions of current astrophysical interest:
 - burn helium \rightarrow C/O ratio in the Universe
 - burn $^{18}{
 m O}
 ightarrow ^{16}{
 m O}/^{18}{
 m O}$ ratio in the Universe
- particular effort on $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ reaction at $^{12}\text{Fcm}\sim 1$ MeV

Approach:

- capture vs. **photo-disintegration** reactions
- monochromatic gamma-ray beams @ ELI-NP
- active-target TPC for measuring kinematics of low-energy charged particles

Current extrapolations of p-wave (E1) and d-wave (E2) astrophysical S-factors for the Gamow peak (red bar) in red giant stars have uncertainty of 40-80%

Footnote on Extreme Light Infrastructure – Nuclear Physic

Bucharest-Magurele, Romania

- Warm LINAC + electron storage ring
- 2 laser wavelengths (IR + green)
- Time structure: 35.7 MHz (semi-continuous beam!)
- Total flux: $\geq 10^{11} \ \gamma/\text{s}$
- ullet FWHM energy bandwidth: $\leq 0.5\%$ @ 10 m
- FWHM beam spot: ≤ 1.5 mm @ 10 m
- Linear Polarization: ≥ 95%

http://www.eli-np.ro/

FACULTY OF PHYSICS

GEM-based Active Gas Target TPC – detector design

Charge amplification:

• three Gas Electron Multipliers (GEM) foils standard CERN technology (50- μ m thick)

Readout:

- planar, 3-coordinate, redundant strip arrays
- about 1000 channels
- GET electronics for signal amplification
- & digitization
- self- or external triggering

O.Tesileanu et al., Romanian Rep. in Phys. 68 Supplement (2016) S699

gas pressure ~ 100 mbar

 $33\times20 \text{ cm}^2 \text{ (readout)}\times20 \text{ cm (drift)}$

GEM-based Active Gas Target TPC – readout concept

The readout concept based on 3 grids of strips – crossed at 60° :

- 3-coordinate, planar, redundant strip readout, 1.5 mm strip pitch
- U-V-W strip arrays on XY plane + Z-coordinate from drift time → virtual 3D pixels
- ullet Simple event topologies o expect only few tracks per event
- Moderate cost of electronics

S. Bachmann et al., NIMA 478 (2002) 104 V. Ableev et al., NIMA 535 (2004) 294 M. Ćwiok, Acta Phys. Pol. B 47 (2016) 707

Footnote on Generic Electronics for Time Projection Chambers

- Developed by: CEA/IRFU, CENBG, GANIL, MSU/NSCL
 - flexible sampling frequency: 1 100 MHz
 - 512 time-cells per channel, analog SCA memory
 - 4 dynamic ranges per channel: 120 fC 10 pC
- 256-ch front-end board (AsAd = ASIC & ADC):
 - 4 AGET chips
 - 12-bit ADC, one channel per AGET chip
- Data concentration, timing & trigger boards:
 - big systems: uTCA crate, CoBo boards, MuTant boards (up to 32,000 channels) – based on Virtex-5 FPGAs
 - small systems: standalone FPGA boards (usually 256 channels) based on Virtex-5 or Zynq-7000
- E. Pollacco et al., NIMA 887 (2018) 81
- E. Pollacco et al., Physics Procedia 37 (2012) 1799

GEM-based Active Gas Target TPC

- demonstrator-detector beam tests

Beam test @ 3 MV Tandem IFIN-HH, Romania – June 2018
NICA Days, October 21-25 2019

Further developments

Thicker-GEM – new development with well known technology

- A little bit **thicker** (125 μ m) metal-coated polymer (Kapton) foil chemically pierced by a high density of holes
- High gas gain ($\sim 10^5$ double and triple-stage tested at absolute pressure of 100 mbar of pure CO_2)
- \sim 17% energy resolution (4.9 keV semi-monochromatic X-rays)
- Current limitation of a single active area 30×30 cm
- Requires double mask technique
- Larger areas possible to obtain via connecting many single sections

The first proof of concept and performance tests performed at University of Warsaw!

Thicker-GEM test bench

- Active volume: ϕ 5 cm \times 10 cm (drift)
- Gas pressure range: 50 mbar 1 atm
- Amplification 3 Thicker-GEM foils (125 μ m)
- Soft X-rays (\sim 5 keV) \Rightarrow gas gain, energy resolution
- Alpha-particle source (~5.5 MeV) ⇒ electron drift velocity, diffusion

Thicker-GEM performance - gas gain

- Test provided with pure CO₂
- Absolute gas pressure 100 mbar
- Safe working conditions
 → no discharges
- 2 orders of magnitude higher gas gain with respect to triple-stack of STD GEMs!

Thicker-GEM performance – energy resolution

Research on the performance of the Thicker-GEM just started!

GEM/Thicker-GEM as a possible solution for MPD

R&D of the (non-)standard GEMs technology is ongoing...
...keeping also in mind the needs of the future MPD experiment:

- CPC tracker for MPD stage 2?
- GEM tracker for MPD stage 2?
- TPC readout chambers upgrade for MPD stage 2?

Thank you!

Work supported by the Polish Ministry of Science and Higher Education from the funds for years 2019-2021 dedicated to implement the international co-funded project no. 4087/ELI-NP/2018/0 and by University of Connecticut under the Collaborative Research Contract no. UConn-LNS_UW/7/2018.

Additional slides

GEM performance

- With a Triple GEM, a gain well above 10⁴ can be sustained even in presence of heavily ionizing background.
- ullet Energy resolution of a single GEM multiplier: FWHM $\sim\!18\%$ at 5.9 keV (gain $\sim\!10^3$)
- Stable effective gain with increasing signal rate

Thicker-GEM test bench (2)

Radiation source:

• Amptek MiniX generator : Ag target, Be window, $U_{XRAY} = 10 \text{ kV}$

• XRF fluorescence filters : 110 μm Ti + 50 μm Kapton

Quasi-monochromatic X-ray spectrum : peak @ 4.9 keV (9% FWHM)

• Conversion rate @ 100 mbar CO_2 : 12-70 Hz for $I_{xRAY} = 40 - 200 \mu A$

