FLUCTUATIONS AND CORRELATIONS STUDY AT NA61/SHINE

Daria Prokhorova

for the NA61/SHINE Collaboration

St. Petersburg State University

Laboratory of Ultra-High Energy Physics

October 22, III NICA days, Warsaw, Poland

MPD/SHINE Joint Session

OUTLINE

- I. Search for the critical point
- 2. NA61/SHINE experiment
- 3. Fluctuation measures
- 4. Results corrections and possible systematic problems
- 5. Conclusions

SEARCH FOR THE CRITICAL POINT

The most popular scenario:

Scan in system size and beam energy→ search for the **critical point**

The most popular scenario:

Scan in system size and beam energy→ search for the **critical point**

The most popular scenario:

Expected region of enhanced fluctuations

Scan in system size and beam energy→ search for the **critical point**

The most popular scenario:

Expected region of enhanced fluctuations

NA61/SHINE strong interactions programme:

- study the properties of the onset of deconfinement
- search for the critical point of strongly interacting matter

NA61/SHINE EXPERIMENT

SHINE - **S**PS **H**eavy **I**on and **N**eutrino **E**xperiment

SHINE - **S**PS **H**eavy **I**on and **N**eutrino **E**xperiment

Performs the scan of beam momenta (13A - 150/158A GeV/c) and system size (p+p, p+Pb, Be+Be,Ar+Sc, Xe+La, Pb+Pb)

SHINE - SPS Heavy Ion and Neutrino Experiment

Performs the scan of beam momenta (13A - 150/158A GeV/c) and system size (p+p, p+Pb, Be+Be,Ar+Sc, Xe+La, Pb+Pb)

Large acceptance hadron spectrometer - full coverage in the forward hemisphere (down to $p_T = 0 \text{ GeV}/c$)

SHINE - SPS Heavy Ion and Neutrino Experiment

Performs the scan of beam momenta (13A - 150/158A GeV/c) and system size (p+p, p+Pb, Be+Be,Ar+Sc, Xe+La, Pb+Pb)

Large acceptance hadron spectrometer - full coverage in the forward hemisphere (down to $p_T = 0 \text{ GeV}/c$)

SHINE - SPS Heavy Ion and Neutrino Experiment

Performs the scan of beam momenta (13A - 150/158A GeV/c) and system size (p+p, p+Pb, Be+Be,Ar+Sc, Xe+La, Pb+Pb)

Large acceptance hadron spectrometer - full coverage in the forward hemisphere (down to $p_T = 0 \text{ GeV}/c$)

Centrality selection in A+A by measuring the forward energy with Projectile Spectator Detector (PSD)

SHINE - SPS Heavy Ion and Neutrino Experiment

Performs the scan of beam momenta (13A - 150/158A GeV/c) and system size (p+p, p+Pb, Be+Be,Ar+Sc, Xe+La, Pb+Pb)

Large acceptance hadron spectrometer - full coverage in the forward hemisphere (down to $p_T = 0 \text{ GeV}/c$)

Centrality selection in A+A by measuring the forward energy with Projectile Spectator Detector (PSD)

SHINE - **S**PS **H**eavy **I**on and **N**eutrino **E**xperiment

Performs the scan of beam momenta (13A - 150/158A GeV/c) and system size (p+p, p+Pb, Be+Be,Ar+Sc, Xe+La, Pb+Pb)

Large acceptance hadron spectrometer - full coverage in the forward hemisphere (down to $p_T = 0 \text{ GeV}/c$)

Centrality selection in A+A by measuring the forward energy with Projectile Spectator Detector (PSD)

Scan in system size and beam energy → search for the **critical point**

Scan in system size and beam energy → search for the **critical point**

~ region of enhanced fluctuations

Scan in system size and beam energy → search for the **critical point**

 $\mu_{\rm c}$

~ region of enhanced fluctuations

What is the CP signal amplitude? What if it is shadowed by trivial fluctuations?

Scan in system size and beam energy → search for the **critical point**

first order transition

J-PARC

baryonic matter

 $\mu_{\rm c}$

hadronic

matter

~ region of enhanced fluctuations

What is the CP signal amplitude? What if it is shadowed by trivial fluctuations?

Proper measures are required

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

 ~ region of enhanced fluctuations

What is the CP signal amplitude? What if it is shadowed by trivial fluctuations?

Proper measures are required

Baseline: construct quantities with the trivial properties in the reference models

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

What is the CP signal amplitude? What if it is shadowed by trivial fluctuations?

Proper measures are required

Intensive fluctuation measure: independent of the number of sources or the system volume

$$\omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$$

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

What is the CP signal amplitude? What if it is shadowed by trivial fluctuations?

Proper measures are required

Intensive fluctuation measure: independent of the number of sources or the system volume

$$\omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$$

 $\omega[N] = I$ for the Poisson distribution of N

 $\omega[N] = 0$ in the absence of N fluctuations

Scan in system size and beam energy → search for the **critical point**

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

μ (MeV)

[Vovchenko, Gorenstein, Stoecker, PRL 118:182301, Vovchenko, et al., JPA 48:305001]

What is the CP signal amplitude? What if it is shadowed by trivial fluctuations?

Proper measures are required

Intensive fluctuation measure: independent of the number of sources or the system volume

$$\omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$$

 $\omega[N] = I$ for the Poisson distribution of N

 $\omega[N] = 0$ in the absence of N fluctuations

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

What is the CP signal amplitude? What if it is shadowed by trivial fluctuations?

Proper measures are required

Baseline: construct quantities with the trivial properties in the reference models

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

What is the CP signal amplitude?

What if it is shadowed by trivial fluctuations?

Proper measures are required

Baseline: construct quantities with the trivial properties in the reference models

+

More sensitivity

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

What is the CP signal amplitude? What if it is shadowed by trivial fluctuations?

Proper measures are required

Baseline: construct quantities with the trivial properties in the reference models

+

More sensitivity

Higher order moments: **intensive skewness and kurtosis** of conserved quantities distributions are more sensitive to the correlation length divergence

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

Higher order moments: **intensive skewness and kurtosis** of conserved quantities distributions are more sensitive to the correlation length divergence

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

Higher order moments: **intensive skewness and kurtosis** of conserved quantities distributions are more sensitive to the correlation length divergence

$$S\sigma = \frac{\langle (\Delta N)^3 \rangle}{\langle (\Delta N)^2 \rangle} ,$$

$$\kappa \sigma^2 = \frac{\langle (\Delta N)^4 \rangle - 3 \langle (\Delta N)^2 \rangle^2}{\langle (\Delta N)^2 \rangle} ,$$

Scan in system size and beam energy \rightarrow search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

Higher order moments: intensive skewness and kurtosis of conserved quantities distributions are more sensitive to the correlation length divergence

$$S\sigma = \frac{\langle (\Delta N)^3 \rangle}{\langle (\Delta N)^2 \rangle} ,$$

$$\kappa \sigma^2 = \frac{\langle (\Delta N)^4 \rangle - 3 \langle (\Delta N)^2 \rangle^2}{\langle (\Delta N)^2 \rangle} ,$$

in terms of cumulants
$$\omega[N]=rac{k_2}{k_1}\;, \qquad S\sigma=rac{k_3}{k_2}\;, \qquad \kappa\sigma^2=rac{k_4}{k_2}$$

Scan in system size and beam energy \rightarrow search for the **critical point**

Possible sensitivity:

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

~ region of enhanced fluctuations

Higher order moments: intensive skewness and kurtosis of conserved quantities distributions are more sensitive to the correlation length divergence

$$S\sigma = \frac{\langle (\Delta N)^3 \rangle}{\langle (\Delta N)^2 \rangle} ,$$

$$\kappa \sigma^2 = \frac{\langle (\Delta N)^4 \rangle - 3 \langle (\Delta N)^2 \rangle^2}{\langle (\Delta N)^2 \rangle} ,$$

in terms of cumulants
$$\omega[N]=\frac{k_2}{k_1}\;,\qquad S\sigma=\frac{k_3}{k_2}\;,\qquad \kappa\sigma^2=\frac{k_4}{k_2}$$

Scan in system size and beam energy \rightarrow search for the **critical point**

Possible sensitivity:

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

~ region of enhanced fluctuations

Higher order moments: intensive skewness and kurtosis of conserved quantities distributions are more sensitive to the correlation length divergence

$$S\sigma = \frac{\langle (\Delta N)^3 \rangle}{\langle (\Delta N)^2 \rangle} ,$$

$$\kappa \sigma^2 = \frac{\langle (\Delta N)^4 \rangle - 3 \langle (\Delta N)^2 \rangle^2}{\langle (\Delta N)^2 \rangle} ,$$

in terms of cumulants
$$\omega[N]=rac{k_2}{k_1}\;, \qquad S\sigma=rac{k_3}{k_2}\;, \qquad \kappa\sigma^2=rac{k_4}{k_2}$$

Scan in system size and beam energy \rightarrow search for the **critical point**

Possible sensitivity:

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

[Vovchenko, Gorenstein, Stoecker, PRL 118: 182301, Vovchenko, et al., IPA 48: 305001]

~ region of enhanced fluctuations

Higher order moments: intensive skewness and kurtosis of conserved quantities distributions are more sensitive to the correlation length divergence

$$S\sigma = \frac{\langle (\Delta N)^3 \rangle}{\langle (\Delta N)^2 \rangle} ,$$

$$\kappa \sigma^2 = \frac{\langle (\Delta N)^4 \rangle - 3 \langle (\Delta N)^2 \rangle^2}{\langle (\Delta N)^2 \rangle} ,$$

in terms of cumulants
$$\omega[N]=rac{k_2}{k_1}\;, \qquad S\sigma=rac{k_3}{k_2}\;, \qquad \kappa\sigma^2=rac{k_4}{k_2}$$

but the problem is that the dependence on the volume distribution remains

Scan in system size and beam energy → search for the **critical point**

Possible sensitivity:

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

[Vovchenko, Gorenstein, Stoecker, PRL 118: 182301, Vovchenko, et al., JPA 48: 305001]

~ region of enhanced fluctuations

$$\omega[N] = \frac{\langle (\Delta N)^2 \rangle}{\langle N \rangle}$$

Intensive fluctuation measure: independent of the number of sources or the system volume

Scan in system size and beam energy → search for the **critical point**

Possible sensitivity:

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

[Vovchenko, Gorenstein, Stoecker, PRL 118:182301, Vovchenko, et al., JPA 48:305001]

~ region of enhanced fluctuations

$$\omega[N] = \frac{\langle (\Delta N)^2 \rangle}{\langle N \rangle}$$

Intensive fluctuation measure: independent of the number of sources or the system volume

$$\omega_A \equiv \frac{\langle A^2 \rangle - \langle A \rangle^2}{\langle A \rangle} = \frac{\langle a^2 \rangle - \langle a \rangle^2}{\langle a \rangle} + \langle a \rangle \frac{\langle N_s^2 \rangle - \langle N_s \rangle^2}{\langle N_s \rangle} \equiv \omega_a^* + \langle a \rangle \omega_s$$

Scan in system size and beam energy → search for the **critical point**

Possible sensitivity:

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

[Vovchenko, Gorenstein, Stoecker, PRL 118:182301, Vovchenko, et al., JPA 48:305001]

~ region of enhanced fluctuations

$$\omega[N] = \frac{\langle (\Delta N)^2 \rangle}{\langle N \rangle}$$

Intensive fluctuation measure: independent of the number of sources or the system volume

$$\omega_A \equiv \frac{\langle A^2 \rangle - \langle A \rangle^2}{\langle A \rangle} = \frac{\langle a^2 \rangle - \langle a \rangle^2}{\langle a \rangle} + \langle a \rangle \frac{\langle N_s^2 \rangle - \langle N_s \rangle^2}{\langle N_s \rangle} \equiv \omega_a^* + \langle a \rangle \omega_s$$

scaled variance of the quantity A for each source

Scan in system size and beam energy → search for the **critical point**

Possible sensitivity:

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

[Vovchenko, Gorenstein, Stoecker, PRL 118:182301, Vovchenko, et al., JPA 48:305001]

~ region of enhanced fluctuations

$$\omega[N] = \frac{\langle (\Delta N)^2 \rangle}{\langle N \rangle}$$

Intensive fluctuation measure: independent of the number of sources or the system volume

$$\omega_A \equiv \frac{\langle A^2 \rangle - \langle A \rangle^2}{\langle A \rangle} = \frac{\langle a^2 \rangle - \langle a \rangle^2}{\langle a \rangle} + \langle a \rangle \frac{\langle N_s^2 \rangle - \langle N_s \rangle^2}{\langle N_s \rangle} \equiv \omega_a^* + \langle a \rangle \omega_s$$

scaled variance of the quantity A for each source

scaled variance of the number of sources

Scan in system size and beam energy → search for the **critical point**

Possible sensitivity:

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

[Vovchenko, Gorenstein, Stoecker, PRL 118:182301, Vovchenko, et al., JPA 48:305001]

~ region of enhanced fluctuations

$$\omega[N] = \frac{\langle (\Delta N)^2 \rangle}{\langle N \rangle}$$

Intensive fluctuation measure: independent of the number of sources or the system volume

$$\omega_A \equiv \frac{\langle A^2 \rangle - \langle A \rangle^2}{\langle A \rangle} = \frac{\langle a^2 \rangle - \langle a \rangle^2}{\langle a \rangle} + \langle a \rangle \frac{\langle N_s^2 \rangle - \langle N_s \rangle^2}{\langle N_s \rangle} \equiv \omega_a^* + \langle a \rangle \omega_s$$

scaled variance of the quantity A for each source

System volume ↔ scaled variance of the number of sources

Scan in system size and beam energy → search for the **critical point**

Possible sensitivity:

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

[Vovchenko, Gorenstein, Stoecker, PRL 118:182301, Vovchenko, et al., JPA 48:305001]

~ region of enhanced fluctuations

$$\omega[N] = \frac{\langle (\Delta N)^2 \rangle}{\langle N \rangle}$$

Intensive fluctuation measure: independent of the number of sources or the system volume, **but still depend on the volume fluctuations**

$$\omega_A \equiv \frac{\langle A^2 \rangle - \langle A \rangle^2}{\langle A \rangle} = \frac{\langle a^2 \rangle - \langle a \rangle^2}{\langle a \rangle} + \langle a \rangle \frac{\langle N_s^2 \rangle - \langle N_s \rangle^2}{\langle N_s \rangle} \equiv \omega_a^* + \langle a \rangle \omega_s$$

scaled variance of the quantity A for each source

System volume ↔ scaled variance of the number of sources

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

What is the CP signal amplitude?

What if it is shadowed by trivial fluctuations?

Proper measures are required

Baseline: construct quantities with the trivial properties in the reference models

+

More sensitivity

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

What is the CP signal amplitude? What if it is shadowed by trivial fluctuations?

Proper measures are required

Baseline: construct quantities with the trivial properties in the reference models

+

More sensitivity

+

Exclude the impact of trivial (volume) fluctuations

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

Strongly intensive quantities: are independent both on the volume and the event-by-event fluctuations of the volume in statistical model of the ideal Boltzmann gas in the grand canonical ensemble

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

Strongly intensive quantities: are independent both on the volume and the event-by-event fluctuations of the volume in statistical model of the ideal Boltzmann gas in the grand canonical ensemble

[Gazdzicki et al. PRC 88:024907]

$$\begin{split} \boldsymbol{\Sigma}[P_{\mathrm{T}},N] &= \frac{1}{C_{\Sigma}} \left[\langle N \rangle \omega[P_{\mathrm{T}}] + \langle P_{\mathrm{T}} \rangle \omega[N] - 2 \cdot \left(\langle P_{\mathrm{T}} \cdot N \rangle - \langle P_{\mathrm{T}} \rangle \langle N \rangle \right) \right] \\ \boldsymbol{\Delta}[P_{\mathrm{T}},N] &= \frac{1}{C_{\Delta}} \left[\langle N \rangle \omega[P_{\mathrm{T}}] - \langle P_{\mathrm{T}} \rangle \omega[N] \right], \qquad C_{\Sigma} = C_{\Delta} = \langle N \rangle \omega(p_{\mathrm{T}}) \end{split}$$

Scan in system size and beam energy → search for the **critical point**

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

~ region of enhanced fluctuations

Strongly intensive quantities: are independent both on the volume and the event-by-event fluctuations of the volume in statistical model of the ideal Boltzmann gas in the grand canonical ensemble

[Gazdzicki et al. PRC 88:024907]

$$\begin{split} \boldsymbol{\Sigma}[P_{\mathrm{T}},N] &= \frac{1}{C_{\boldsymbol{\Sigma}}} \left[\langle N \rangle \boldsymbol{\omega}[P_{\mathrm{T}}] + \langle P_{\mathrm{T}} \rangle \boldsymbol{\omega}[N] - 2 \cdot \left(\langle P_{\mathrm{T}} \cdot N \rangle - \langle P_{\mathrm{T}} \rangle \langle N \rangle \right) \right] \\ \boldsymbol{\Delta}[P_{\mathrm{T}},N] &= \frac{1}{C_{\boldsymbol{\Delta}}} \left[\langle N \rangle \boldsymbol{\omega}[P_{\mathrm{T}}] - \langle P_{\mathrm{T}} \rangle \boldsymbol{\omega}[N] \right], \qquad C_{\boldsymbol{\Sigma}} = C_{\boldsymbol{\Delta}} = \langle N \rangle \boldsymbol{\omega}(p_{\mathrm{T}}) \end{split}$$

 $\Sigma[P_T, N] = \Delta[P_T, N] = I$ for independent particle model and for the IBG in GCE $\Sigma[P_T, N] = \Delta[P_T, N] = 0$ in the absence of fluctuations

Scan in system size and beam energy → search for the **critical point**

Possible sensitivity:

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

[Vovchenko, Gorenstein, Stoecker, PRL 118:182301, Vovchenko, et al., JPA 48:305001]

~ region of enhanced fluctuations

Strongly intensive quantities: are independent both on the volume and the event-by-event fluctuations of the volume in statistical model of the ideal Boltzmann gas in the grand canonical ensemble

[Gazdzicki et al. PRC 88:024907]

$$\begin{split} \boldsymbol{\Sigma}[P_{\mathrm{T}},N] &= \frac{1}{C_{\Sigma}} \left[\langle N \rangle \omega[P_{\mathrm{T}}] + \langle P_{\mathrm{T}} \rangle \omega[N] - 2 \cdot \left(\langle P_{\mathrm{T}} \cdot N \rangle - \langle P_{\mathrm{T}} \rangle \langle N \rangle \right) \right] \\ \boldsymbol{\Delta}[P_{\mathrm{T}},N] &= \frac{1}{C_{\Delta}} \left[\langle N \rangle \omega[P_{\mathrm{T}}] - \langle P_{\mathrm{T}} \rangle \omega[N] \right], \qquad C_{\Sigma} = C_{\Delta} = \langle N \rangle \omega(p_{\mathrm{T}}) \end{split}$$

 $\Sigma[P_T,N]=\Delta[P_T,N]=I$ for independent particle model and for the IBG in GCE $\Sigma[P_T,N]=\Delta[P_T,N]=0$ in the absence of fluctuations

Scan in system size and beam energy → search for the **critical point**

Possible sensitivity:

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

[Vovchenko, Gorenstein, Stoecker, PRL 118:182301, Vovchenko, et al., JPA 48:305001]

~ region of enhanced fluctuations

Strongly intensive quantities: are independent both on the volume and the event-by-event fluctuations of the volume in statistical model of the ideal Boltzmann gas in the grand canonical ensemble

[Gazdzicki et al. PRC 88:024907]

$$\begin{split} \boldsymbol{\Sigma}[P_{\mathrm{T}},N] &= \frac{1}{C_{\Sigma}} \left[\langle N \rangle \omega[P_{\mathrm{T}}] + \langle P_{\mathrm{T}} \rangle \omega[N] - 2 \cdot \left(\langle P_{\mathrm{T}} \cdot N \rangle - \langle P_{\mathrm{T}} \rangle \langle N \rangle \right) \right] \\ \boldsymbol{\Delta}[P_{\mathrm{T}},N] &= \frac{1}{C_{\Delta}} \left[\langle N \rangle \omega[P_{\mathrm{T}}] - \langle P_{\mathrm{T}} \rangle \omega[N] \right], \qquad C_{\Sigma} = C_{\Delta} = \langle N \rangle \omega(p_{\mathrm{T}}) \end{split}$$

 $\Sigma[P_T, N] = \Delta[P_T, N] = I$ for independent particle model and for the IBG in GCE $\Sigma[P_T, N] = \Delta[P_T, N] = 0$ in the absence of fluctuations

Moments of **negatively charged hadrons** distribution

$$\omega$$
[h-] = I

$$S\sigma[h-] = I$$

$$\kappa\sigma^2[h-]=I$$

$$\omega$$
[h-] = 0

$$S\sigma[h-]=0$$

$$\kappa\sigma^2[h-]=0$$

Moments of negatively charged hadrons distribution

$$\omega$$
[h-] = I
 $S\sigma$ [h-] = I for independent particle production (Poisson)
 $\kappa\sigma^2$ [h-] = I

$$\omega[h-] = 0$$

 $S\sigma[h-] = 0$ for no fluctuation
 $\kappa\sigma^2[h-] = 0$

Moments of negatively charged hadrons distribution

$$\omega$$
[h-] = I
 $S\sigma$ [h-] = I for independent particle production (Poisson)
 $\kappa\sigma^2$ [h-] = I

$$\omega$$
[h-] = 0
 $S\sigma$ [h-] = 0
 $\kappa\sigma^2$ [h-] = 0

for no fluctuation

Moments of **net charge** distribution (h+ - h-)

Moments of negatively charged hadrons distribution

$$\omega$$
[h-] = I
 $S\sigma$ [h-] = I for independent particle production (Poisson)
 $\kappa\sigma^2$ [h-] = I

$$\omega$$
[h-] = 0
 $S\sigma$ [h-] = 0
 $\kappa\sigma^2$ [h-] = 0

for no fluctuation

Moments of **net charge** distribution (h+ - h-)

Scellam distribution - works if h+ and h- are distributed according to independent Poisson distributions

Moments of negatively charged hadrons distribution

$$\omega$$
[h-] = I $S\sigma$ [h-] = I for independent particle production (Poisson) $\kappa\sigma^2$ [h-] = I

$$ω$$
[h-] = 0
 $Sσ$ [h-] = 0
 $κσ$ ²[h-] = 0

for no fluctuation

Moments of **net charge** distribution (h+ - h-)

Scellam distribution - works if h+ and h- are distributed according to independent Poisson distributions

$$\omega[h+ - h-] = (\mu_{+} + \mu_{-})/(\mu_{+} - \mu_{-})$$

$$S\sigma[h+ - h-] = (\mu_{+} - \mu_{-})/(\mu_{+} + \mu_{-})$$

$$\kappa\sigma^{2}[h+ - h-] = I$$

Moments of negatively charged hadrons distribution

$$\omega$$
[h-] = I
$$S\sigma$$
[h-] = I for independent particle production (Poisson)
$$\kappa\sigma^2$$
[h-] = I

$$ω$$
[h-] = 0
 $Sσ$ [h-] = 0
 $κσ$ ²[h-] = 0

for no fluctuation

Moments of **net charge** distribution (h+ - h-)

Scellam distribution - works if h+ and h- are distributed according to independent Poisson distributions

$$\omega[h+ - h-] = (\mu_{+} + \mu_{-})/(\mu_{+} - \mu_{-})$$

$$S\sigma[h+ - h-] = (\mu_{+} - \mu_{-})/(\mu_{+} + \mu_{-})$$

$$\kappa\sigma^{2}[h+ - h-] = I$$

simple reference

(a single number)

complicated one

(depends on mean values)

SOME NA61/SHINE RESULTS: SCALED VARIANCE

Reference lines:

 ω [h-] = I for independent particle production (Poisson) ω [h-] = 0 for no fluctuation

Scellam distribution works if h+ and h- are distributed according to independent Poisson distributions

SOME NA61/SHINE RESULTS: SKEWNESS

Reference lines:

 ω [h-] = I for independent particle production (Poisson) ω [h-] = 0 for no fluctuation

Scellam distribution works if h+ and h- are distributed according to independent Poisson distributions

SOME NA61/SHINE RESULTS: KURTOSIS

Reference lines:

 ω [h-] = I for independent particle production (Poisson) ω [h-] = 0 for no fluctuation

Scellam distribution works if h+ and h- are distributed according to independent Poisson distributions

Strongly intensive quantities

$$\Sigma[P_{T}, N] = \frac{1}{C_{\Sigma}} \left[\langle N \rangle \omega[P_{T}] + \langle P_{T} \rangle \omega[N] - 2 \cdot (\langle P_{T} \cdot N \rangle - \langle P_{T} \rangle \langle N \rangle) \right]$$
$$\Delta[P_{T}, N] = \frac{1}{C_{\Lambda}} \left[\langle N \rangle \omega[P_{T}] - \langle P_{T} \rangle \omega[N] \right], \qquad C_{\Sigma} = C_{\Delta} = \langle N \rangle \omega(p_{T})$$

Strongly intensive quantities

$$\begin{split} \boldsymbol{\Sigma}[P_{\mathrm{T}},N] &= \frac{1}{C_{\Sigma}} \left[\langle N \rangle \omega[P_{\mathrm{T}}] + \langle P_{\mathrm{T}} \rangle \omega[N] - 2 \cdot \left(\langle P_{\mathrm{T}} \cdot N \rangle - \langle P_{\mathrm{T}} \rangle \langle N \rangle \right) \right] \\ \boldsymbol{\Delta}[P_{\mathrm{T}},N] &= \frac{1}{C_{\Delta}} \left[\langle N \rangle \omega[P_{\mathrm{T}}] - \langle P_{\mathrm{T}} \rangle \omega[N] \right], \qquad C_{\Sigma} = C_{\Delta} = \langle N \rangle \omega(p_{\mathrm{T}}) \end{split}$$

Strongly intensive quantities

Data shows that $\Delta[P_T, N] < I, \Sigma[P_T, N] \ge I$

Strongly intensive quantities

Data shows that $\Delta[P_T, N] < I, \Sigma[P_T, N] \ge I$

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

[Vovchenko, Gorenstein, Stoecker, PRL 118: 182301, Vovchenko, et al., JPA 48: 305001]

[Andronov, Acta Phys. Pol. B Proc. Suppl. 10 449]

Strongly intensive quantities

Data shows that $\Delta[P_T, N] < I, \Sigma[P_T, N] \ge I$

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

[Vovchenko, Gorenstein, Stoecker, PRL 118: 182301, Vovchenko, et al., JPA 48: 305001]

Naive sketch

[Gazdzicki, M., Seyboth, P. *Acta Phys. Pol. B* **47**, 1201 (2016)]

[Andronov, Acta Phys. Pol. B Proc. Suppl. 10 449]

Strongly intensive quantities

Data shows that $\Delta[P_T, N] < I, \Sigma[P_T, N] \ge I$

Nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

[Vovchenko, Gorenstein, Stoecker, PRL 118:182301, Vovchenko, et al., JPA 48:305001]

Naive sketch

[Gazdzicki, M., Seyboth, P. *Acta Phys. Pol. B* **47**, 1201 (2016)]

[Andronov, Acta Phys. Pol. B Proc. Suppl. 10 449]

Additional possible analysis: choice of a phase space

Additional possible analysis: choice of a phase space

Each rapidity is associated with a different value of μ and therefore **probes a different part of the (\mu-T)** phase diagram

Becattini F, Manninen J and Gazdzicki M PRC 73 044905

[Gazdzicki, M., Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

Additional possible analysis: choice of a phase space

Each rapidity is associated with a different value of μ and therefore **probes a different part of the (\mu-T)** phase diagram

[Becattini F, Manninen J and Gazdzicki M PRC 73 044905]

[NA61, EP|C 77 10:671]

Moreover, the ratio of p and \bar{p} changes significantly with rapidity in inelastic p + p at the SPS energies

[D. Prokhorova, KnE Energ. Phys. 3 (2018) 217 - 225]

Additional possible analysis: choice of a phase space

Each rapidity is associated with a different value of μ and therefore **probes a different part of the (\mu-T)** phase diagram

[Becattini F, Manninen J and Gazdzicki M PRC 73 044905]

[NA61, EPJC 77 10:671]

Moreover, the ratio of p and \bar{p} changes significantly with rapidity in inelastic p + p at the SPS energies

158 GeV/c × 4

■ 80 GeV/c × 4

▲ 40 GeV/c × 2

▼ 30.9 GeV/c × 1

1 1.2 1.4 1.6

[D. Prokhorova, KnE Energ. Phys. 3 (2018) 217 - 225]

In this case we also probe the short- and longrange correlations and access the information about particle sources

Additional possible analysis: choice of a phase space

Each rapidity is associated with a different value of μ and therefore probes a different part of the (μ -T) phase diagram

[Becattini F, Manninen J and Gazdzicki M PRC 73 044905]

[NA61, EPJC 77 10:671]

Moreover, the ratio of p and \bar{p} changes significantly with rapidity in inelastic p + p at the SPS energies

FLUCTUATION STUDIES WITH PSEUDORAPIDITY

Strongly intensive variables defined in two kinematically separated regions

$$\Sigma[N_{\rm F},N_{\rm B}] = \frac{1}{C_{\Sigma}} \left[\langle N_{\rm B} \rangle \omega[N_{\rm F}] + \langle N_{\rm F} \rangle \omega[N_{\rm B}] - 2 \cdot (\langle N_{\rm F} \cdot N_{\rm B} \rangle - \langle N_{\rm F} \rangle \langle N_{\rm B} \rangle) \right]$$

[E. V. Andronov, Theoretical and Mathematical Physics 185, 1383 (2015)]

FLUCTUATION STUDIES WITH PSEUDORAPIDITY

Strongly intensive variables defined in two kinematically separated regions

$$\Sigma[N_{\rm F},N_{\rm B}] = \frac{1}{C_{\Sigma}} \left[\langle N_{\rm B} \rangle \omega[N_{\rm F}] + \langle N_{\rm F} \rangle \omega[N_{\rm B}] - 2 \cdot (\langle N_{\rm F} \cdot N_{\rm B} \rangle - \langle N_{\rm F} \rangle \langle N_{\rm B} \rangle) \right]$$

[E. V. Andronov, Theoretical and Mathematical Physics 185, 1383 (2015)]

uncorrected rapidity distribution of all charged hadrons produced in p + p @158 GeV/c in NA61/SHINE experimental acceptance

FLUCTUATION STUDIES WITH **PSEUDORAPIDITY**

Strongly intensive variables defined in two kinematically separated regions

$$\Sigma[N_{\rm F}, N_{\rm B}] = \frac{1}{C_{\Sigma}} \left[\langle N_{\rm B} \rangle \omega[N_{\rm F}] + \langle N_{\rm F} \rangle \omega[N_{\rm B}] - 2 \cdot (\langle N_{\rm F} \cdot N_{\rm B} \rangle - \langle N_{\rm F} \rangle \langle N_{\rm B} \rangle) \right]$$

uncorrected rapidity distribution of all charged hadrons produced in p + p @158 GeV/c in NA61/SHINE experimental acceptance

FLUCTUATION STUDIES WITH **PSEUDORAPIDITY**

Strongly intensive variables defined in two kinematically separated regions

$$\Sigma[N_{\rm F}, N_{\rm B}] = \frac{1}{C_{\Sigma}} \left[\langle N_{\rm B} \rangle \omega[N_{\rm F}] + \langle N_{\rm F} \rangle \omega[N_{\rm B}] - 2 \cdot (\langle N_{\rm F} \cdot N_{\rm B} \rangle - \langle N_{\rm F} \rangle \langle N_{\rm B} \rangle) \right]$$

[D. Prokhorova, EPJ Web of Conferences 204, 07013 (2019)]

uncorrected rapidity distribution of all charged hadrons produced in p + p @158 GeV/c in NA61/SHINE experimental acceptance

RESULTS CORRECTIONS

Issues – detector inefficiencies:

- I. Loses of events trigger biases
- 2. Loses or gains of tracks event migration in multiplicity histogram

Issues – detector inefficiencies:

corrections of the results are needed

- I. Loses of events trigger biases
- 2. Loses or gains of tracks event migration in multiplicity histogram

Issues – detector inefficiencies:

corrections of the results are needed

- I. Loses of events trigger biases
- 2. Loses or gains of tracks event migration in multiplicity histogram

To account for detector response — build a **Response Matrix**

Issues – detector inefficiencies:

corrections of the results are needed

- I. Loses of events trigger biases
- 2. Loses or gains of tracks event migration in multiplicity histogram

To account for detector response – build a **Response Matrix**

- Response Matrix represents the probability to measure *n* in the event with the real quantity equal to N
- Event loses are considered in the Response Matrix normalization

Issues – detector inefficiencies:

corrections of the results are needed

- I. Loses of events trigger biases
- 2. Loses or gains of tracks event migration in multiplicity histogram

Several ideas how to correct data:

Issues – detector inefficiencies:

corrections of the results are needed

- I. Loses of events trigger biases
- 2. Loses or gains of tracks event migration in multiplicity histogram

Several ideas how to correct data:

 simple weighting of the distribution/moments of distribution by factors obtained from the difference between pure MC and pure MC + GEANT

Issues – detector inefficiencies:

corrections of the results are needed

- I. Loses of events trigger biases
- 2. Loses or gains of tracks event migration in multiplicity histogram

Several ideas how to correct data:

- simple weighting of the distribution/moments of distribution by factors obtained from the difference between
 pure MC and pure MC + GEANT
- unfolding of the Measured Distributions by means of the RooUnfold methods (Bayesian approach is the most
 prominent one and could be used for the multidimensional unfolding) https://gitlab.cern.ch/RooUnfold/RooUnfold

Issues – detector inefficiencies:

corrections of the results are needed

- I. Loses of events trigger biases
- 2. Loses or gains of tracks event migration in multiplicity histogram

Several ideas how to correct data:

- simple **weighting of the distribution/moments** of distribution by factors obtained from the difference between pure MC and pure MC + GEANT
- unfolding of the **Measured Distributions** by means of the RooUnfold methods (Bayesian approach is the most prominent one and could be used for the multidimensional unfolding) https://gitlab.cern.ch/RooUnfold/RooUnfold
- correction of the Measured Moments of Distribution (based on T. Nonaka, M. Kitazawa, S. Esumi, arXiv:1805.00279 (NIMA 906 (2018) 10))

CONCLUSION

NA61/SHINE conducts search for the critical point of strongly interacting matter by means of analysis of fluctuations, namely, multiplicity and $[P_T, N]$ fluctuations

CONCLUSION

NA61/SHINE conducts search for the critical point of strongly interacting matter by means of analysis of fluctuations, namely, multiplicity and $[P_T, N]$ fluctuations

Results on system size vs. energy dependence of N and $[P_T, N]$ fluctuations for particles produced in strong processes within the NA61/SHINE acceptance show no indication of the critical point so far

CONCLUSION

NA61/SHINE conducts search for the critical point of strongly interacting matter by means of analysis of fluctuations, namely, multiplicity and $[P_T, N]$ fluctuations

Results on system size vs. energy dependence of N and $[P_T, N]$ fluctuations for particles produced in strong processes within the NA61/SHINE acceptance show no indication of the critical point so far

The detailed analysis of the accumulated experimental data is continued. Stay tuned!

THANK YOU FOR YOUR ATTENTION

daria.prokhorova@cern.ch

This work is supported by the Russian Science Foundation, grant 17-72-20045