Centrality determination in MPD using MC Glauber model

Petr Parfenov (MEPhI, INR)
Ilya Segal (MEPhI)
Elizaveta Zherebtsova (MEPhI, INR)
Ilya Selyuzhenkov (GSI, MEPhI)
Arkadiy Taranenko (MEPhI)
Alexander Ivashkin (INR)

23.10.2019
NICA days 2019 and 4th MPD Collaboration Meeting
Warsaw, Poland

This work is supported by RFFR 18-02-40065 grant
Motivation

Evolution of matter produced in heavy-ion collisions depend on its initial geometry

Goal: map collision geometry to the measurable quantities
Comparison with existing data (RHIC BES, NA49/NA61 scans)

- **Collision geometry:** impact parameter, number of participating nucleons, number of binary NN collisions, etc.
- **Measurable quantities:** multiplicity of the produced charged particles, energy of the spectators
STAR BES-II program

<table>
<thead>
<tr>
<th>Beam Energy (GeV/nucleon)</th>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>Run Time</th>
<th>Species</th>
<th>Number Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8</td>
<td>19.6</td>
<td>4.5 weeks</td>
<td>Au+Au</td>
<td>400M MB</td>
</tr>
<tr>
<td>7.3</td>
<td>14.5</td>
<td>5.5 weeks</td>
<td>Au+Au</td>
<td>300M MB</td>
</tr>
<tr>
<td>5.75</td>
<td>11.5</td>
<td>5 weeks</td>
<td>Au+Au</td>
<td>230M MB</td>
</tr>
<tr>
<td>4.6</td>
<td>9.1 1</td>
<td>4 weeks</td>
<td>Au+Au</td>
<td>160M MB</td>
</tr>
<tr>
<td>9.8</td>
<td>4.5 (FXT)</td>
<td>2 days</td>
<td>Au+Au</td>
<td>100M MB</td>
</tr>
<tr>
<td>7.3</td>
<td>3.9 (FXT)</td>
<td>2 days</td>
<td>Au+Au</td>
<td>100M MB</td>
</tr>
<tr>
<td>5.75</td>
<td>3.5 (FXT)</td>
<td>2 days</td>
<td>Au+Au</td>
<td>100M MB</td>
</tr>
<tr>
<td>31.2</td>
<td>7.7 (FXT)</td>
<td>2 days</td>
<td>Au+Au</td>
<td>100M MB</td>
</tr>
<tr>
<td>19.5</td>
<td>6.2 (FXT)</td>
<td>2 days</td>
<td>Au+Au</td>
<td>100M MB</td>
</tr>
<tr>
<td>13.5</td>
<td>5.2 (FXT)</td>
<td>2 days</td>
<td>Au+Au</td>
<td>100M MB</td>
</tr>
</tbody>
</table>

Many measurements at NICA energy range will be done during STAR BES-II
Will require comparison of the future MPD measurements with the RHIC/SPS
Centrality in STAR

- Uncorrected charged particle multiplicity distribution in TPC ($|\eta|<0.5$)
- Comparison with MC Glauber simulations
- Fitted using two-component model:

 \[\frac{dN_{ch}}{d\eta} \bigg|_{\eta=0} = n_{pp} \left[(1-x) N_{part}/2 + x N_{coll} \right] \]

Similar centrality estimator is needed for comparisons with STAR

Centrality determination in MPD (NICA)

- Time Projection Chamber (TPC)
 $|\eta|<1.5$

- Forward Hadron Calorimeter (FHCaI)
 $2<|\eta|<5$
Charged particle multiplicity in MPD

Reconstructed data:
- UrQMD 3.4 simulation
 - Au+Au, $N_{ev}=500k$, $\sqrt{s_{NN}}=7.7, 11.5 \text{ GeV}$
- GEANT4 MPD detector simulation
- Reconstruction procedure:
 - Realistic tracking in TPC (Cluster Finder)

Used particle selection:
- $|\eta|<0.5$
- $p_T>0.15 \text{ GeV/c}$
Integrating the CBM Centrality framework

MC Glauber data

Evaluate \(N_a \):
\[
N_a = f N_{\text{part}} + (1-f) N_{\text{coll}}
\]

Call
\[
\text{NBD}(\mu, k) \times N_a
\]

Build multiplicity fitting function

Evaluate \(\chi^2 \)

Minimize \(\chi^2 \) to find \(f, \mu, k \)

This centrality procedure was used in CBM, NA49, and NA61/SHINE:
EPJ Web Conf. 182 (2018) 02132
Implementantion in MPD: https://github.com/IlyaSegal/NICA
Lubynets O., Selyuzhenkov I., Klochkov V. 33-rd CBM CM
Glauber Model configuration

Used TGlauberMC-3.2 version from tglaufermc.hepforge.org

Input to the model

- Inelastic NN cross section
 - $\sigma_{NN}=29.7$ mb for $\sqrt{s}_{NN}=7.7$ GeV
 - $\sigma_{NN}=31.2$ mb for $\sqrt{s}_{NN}=11.5$ GeV
- Colliding nuclei
 - “Au(197,79)”+”Au(197,79)”

Output from the model

- TNtuple with model parameters:
 - Impact parameter b
 - Number of participating in the collision nucleons N_{part}
 - Number of NN collisions N_{coll}
 - Participant eccentricity ε_n
 - etc.

In progress: comparison MC Glauber with GLISSANDO arXiv:1901.04484 [nucl-th]
Centrality framework configuration

NBD Equation:

\[P_{\mu,k}(n) = \frac{\Gamma(n+k)}{\Gamma(n+1) \Gamma(k)} \left(\frac{\mu}{k} \right)^n \left(\frac{\mu}{k} + 1 \right)^{n+k} \]

Fitting function for charged particle multiplicity:

\[N_{ch}(f, \mu, k) = P_{\mu,k}(n) \cdot [f N_{part} + (1-f) N_{coll}] \]

Normalization of the total number of events:

\[\frac{N_{reco}^{ev}}{N_{ev}^{MC\ Glauber}} = \frac{1}{10} \]

Parameter range:

\[f = (0 - 1), \ f_{step} = 0.01 \]
\[k = (0 - 50), \ k_{step} = 1 \]

Fitting region:

\[N_{ch} = \begin{cases} (20 - 310), & \sqrt{s_{NN}} = 7.7 \text{ GeV} \\ (15 - 380), & \sqrt{s_{NN}} = 11.5 \text{ GeV} \end{cases} \]
Fit parameters f, k vs χ^2

- $f=0$, $k=14$, $\mu=0.31$, $\chi^2=1.46\pm0.12$, $M=(20,310)$

- $f=0.24$, $k=2$, $\mu=0.71$, $\chi^2=1.24\pm0.06$, $M=(15,380)$
MC Glauber fit: h^\pm multiplicity

MC Glauber fit is in the good agreement with simulated input for the large multiplicity region

$f=0$, $k=14$, $\mu=0.31$, $\chi^2=1.46\pm0.12$, $M=(20,310)$
MC Glauber fit: \(h^\pm \) multiplicity

\[f=0.24, k=2, \mu=0.71, \chi^2=1.24\pm0.06, M=(15,380) \]
b vs. multiplicity correlation

Events in multiplicities $M \pm \Delta M$ have impact parameter in range $b \pm \sigma_b$
N_{ch} distribution in centrality classes

$\sqrt{s_{NN}} = 7.7$ GeV

$\sqrt{s_{NN}} = 11.5$ GeV
b distribution in centrality classes

\[\sqrt{s_{\text{NN}}} = 7.7 \text{ GeV} \]

\[\sqrt{s_{\text{NN}}} = 11.5 \text{ GeV} \]
N_{part} distribution in centrality classes
N_{coll} distribution in centrality classes
Comparison of the UrQMD, PHSD, SMASH & MC Glauber parameters
b vs centrality: MC Glauber vs UrQMD

Reasonable agreement between MC Glauber and UrQMD
b vs centrality: MC Glauber vs PHSD

Reasonable agreement between MC Glauber and PHSD
b vs centrality: different models

Reasonable agreement between UrQMD, PHSD and SMASH

Au+Au, $\sqrt{s_{NN}}=7.7$ GeV

Au+Au, $\sqrt{s_{NN}}=11.5$ GeV
N_{part} vs b: all models

- PHSD
- UrQMD
- MC Glauber
Eccentricity ε_n

- Eccentricity characterizes initial-state spatial anisotropy
- In MC Glauber, ε_n defined as a $\varepsilon_{\text{part}}$ in the center-of-mass system of the participant nuclei (Phys. Rev. C81 (2010) 054905):

$$\varepsilon_n = \sqrt{\frac{\langle r^2 \cos(n \varphi) \rangle^2 + \langle r^2 \sin(n \varphi) \rangle^2}{\langle r^2 \rangle}}$$

- ε_2 is system dependent
- ε_3 is system independent
Eccentricity: Comparison w/ UrQMD

Notable difference between MC Glauber and UrQMD eccentricities
ε_3: Comparison w/ UrQMD

Notable difference between MC Glauber and UrQMD
Summary and next steps

- MC-Glauber based procedure for centrality determination is established
 - UrQMD at two energies ($\sqrt{s_{NN}}=7.7, 11.5$ GeV) are under study
- Fit reproduces charged particle multiplicity with chosen parameters
- Extracted relation between model parameters (b, N_{part}, N_{coll}) and multiplicity centrality classes
 - Impact parameter from MC Glauber and UrQMD in given centrality classes are in reasonable agreement
- Comparison of the ε_n between MC Glauber and UrQMD shows notable difference
- Comparison between MC Glauber and other models: PHSD, PHQMD, SMASH, JAM - work in progress.
- Systematic study and analysis note are under preparation.
Thank you for your attention!
Backup
h^\pm multiplicity

Au+Au, $\sqrt{s_{NN}}=7.7$ GeV

$\sqrt{s_{NN}}=7.7$ GeV

$\sqrt{s_{NN}}=11.5$ GeV

Au+Au, $\sqrt{s_{NN}}=11.5$ GeV
 vs centrality: comparison between models
b vs centrality: Glauber vs SMASH

Au+Au, $\sqrt{s_{NN}} = 7.7$ GeV

Au+Au, $\sqrt{s_{NN}} = 11.5$ GeV

- MC Glauber
- SMASH
b vs centrality: all models

$Au+Au, \sqrt{s_{NN}}=7.7$ GeV

$Au+Au, \sqrt{s_{NN}}=11.5$ GeV

- SMASH
- PHSD
- UrQMD reco
Eccentricity: comparison with STAR

Good agreement with the published data
Initial state comparison:
\[\sqrt{s_{NN}} = 7.7 \text{ GeV} \]
MC Glauber vs PHSD: b, N_{part}
MC Glauber vs PHSD: ε_n
Initial state comparison:
\[\sqrt{s_{_{NN}}} = 11.5 \text{ GeV} \]
MC Glauber vs PHSD: b, N_{part}
MC Glauber vs PHSD: ε_n
MC Glauber vs UrQMD: b, N_{part}
MC Glauber vs UrQMD: ε_n
MC Glauber vs pure UrQMD
Fit parameters f, k vs χ^2

$f=0.49$, $k=46$, $\mu=0.61$, $\chi^2=1.29\pm0.06$, $M=(35,445)$
Fit parameters f,k vs χ^2

$f=0.45$, $k=29$, $\mu=0.71$, $\chi^2=1.24\pm0.05$, $M=(40,540)$
MC Glauber fit: h^\pm multiplicity

$\sqrt{s_{NN}} = 7.7$ GeV

$\sqrt{s_{NN}} = 11.5$ GeV
b-multiplicity correlation

Events in multiplicities $M \pm \Delta M$ have impact parameter in range $b \pm \sigma_b$
b distribution in centrality classes

\[\sqrt{s_{NN}} = 7.7 \text{ GeV} \]

\[\sqrt{s_{NN}} = 11.5 \text{ GeV} \]
Multiplicity distribution in centrality classes

\(\sqrt{s_{NN}} = 7.7 \text{ GeV} \)

\(\sqrt{s_{NN}} = 11.5 \text{ GeV} \)
Centrality classes: Npart

Au+Au, $\sqrt{s_{NN}} = 7.7$ GeV

Au+Au, $\sqrt{s_{NN}} = 11.5$ GeV
Centrality classes: Ncoll

Au+Au, $\sqrt{s_{NN}}=7.7$ GeV

Au+Au, $\sqrt{s_{NN}}=11.5$ GeV
Centrality classes: Ncoll
Centrality framework results for UrQMD reco with pion multiplicity
Charged particle multiplicity in MPD

Reconstructed data:
- UrQMD 3.4 simulation
 - Au+Au, \(N_{\text{ev}} = 500k \), \(\sqrt{s_{\text{NN}}} = 7.7, 11.5 \text{ GeV} \)
- GEANT4 MPD detector simulation
- Reconstruction procedure:
 - Realistic tracking in TPC (Cluster Finder)

Used particle selection:
- Only charged pions
- \(|\eta| < 0.5\)
- \(p_T > 0.15 \text{ GeV/c}\)
Fit parameters f,k vs χ^2

- $f=0$, $k=42$, $\mu=0.24$, $\chi^2=1.39\pm0.1$, $M=(10,240)$
- $f=0.01$, $k=43$, $\mu=0.3$, $\chi^2=1.17\pm0.07$, $M=(10,320)$
MC Glauber fit: π^\pm multiplicity

f=0, k=42, $\mu=0.24$, $\chi^2=1.39\pm0.1$, $M=(10,240)$

MC Glauber fit is in the good agreement with simulated input for the large multiplicity region
MC Glauber fit: π^\pm multiplicity

$f=0.01$, $k=43$, $\mu=0.3$, $\chi^2=1.17\pm0.07$, $M=(10,320)$

MC Glauber fit is in the good agreement with simulated input for the large multiplicity region.
b vs. multiplicity correlation

Events in multiplicities $M \pm \Delta M$ have impact parameter in range $b \pm \sigma_b$
N_{ch} distribution in centrality classes

\[\sqrt{s_{\text{NN}}} = 7.7 \text{ GeV} \]

\[\sqrt{s_{\text{NN}}} = 11.5 \text{ GeV} \]
b distribution in centrality classes

\[\sqrt{s_{NN}} = 7.7 \text{ GeV} \]

\[\sqrt{s_{NN}} = 11.5 \text{ GeV} \]

No 90-100% centrality bin. Investigating.
N_{part} distribution in centrality classes

![Graphs showing N_{part} distribution in different centrality classes.](Image)

- $\sqrt{s_{\text{NN}}}=7.7$ GeV
- $\sqrt{s_{\text{NN}}}=11.5$ GeV

Centrality, %

- 0.0%-10.0%
- 10.0%-20.0%
- 20.0%-30.0%
- 30.0%-40.0%
- 40.0%-50.0%
- 50.0%-60.0%
- 60.0%-70.0%
- 70.0%-80.0%
- 80.0%-90.0%
- 90.0%-100.0%
- 0%-100%
N_{coll} distribution in centrality classes
Centrality framework results for PHSD
Charged particle multiplicity in PHSD

Generated data:
- PHSD v4.0 simulation
 - Au+Au, $N_{ev} = 500k$, $\sqrt{s_{NN}} = 7.7, 11.5 \text{ GeV}$

Used particle selection:
- $|\eta| < 0.5$
- $p_T > 0.15 \text{ GeV/c}$
Fit parameters f, k vs χ^2

$f=0, k=24, \mu=0.27, \chi^2=1.75\pm0.09, M=(10,265)$

$f=0.34, k=21, \mu=0.39, \chi^2=1.47\pm0.08, M=(10,320)$
MC Glauber fit: h^\pm multiplicity

$f=0$, $k=24$, $\mu=0.27$, $\chi^2=1.75\pm0.09$, $M=(10,265)$

MC Glauber fit is in the good agreement with simulated input for the large multiplicity region
MC Glauber fit: h^\pm multiplicity

f=0.34, k=21, $\mu=0.39$, $\chi^2=1.47\pm0.08$, M=(10,320)

MC Glauber fit is in the good agreement with simulated input for the large multiplicity region.
Events in multiplicities $M \pm \Delta M$ have impact parameter in range $b \pm \sigma_b$
N_{ch} distribution in centrality classes

\[\sqrt{s_{NN}} = 7.7 \text{ GeV} \]

\[\sqrt{s_{NN}} = 11.5 \text{ GeV} \]
$\sqrt{s_{NN}} = 7.7 \text{ GeV}$

$\sqrt{s_{NN}} = 11.5 \text{ GeV}$

b distribution in centrality classes

$\langle b \rangle \pm \sigma_b$
N_{part} distribution in centrality classes

- $\sqrt{s_{\text{NN}}}=7.7$ GeV
- $\sqrt{s_{\text{NN}}}=11.5$ GeV

Centrality, %
N_{coll} distribution in centrality classes
Centrality framework results for SMASH
Charged particle multiplicity in SMASH

Generated data:
- SMASH v1.6 simulation
 - Au+Au, \(N_{ev}=500k \), \(\sqrt{s_{NN}}=7.7, 11.5 \) GeV

Used particle selection:
- \(|\eta|<0.5 \)
- \(p_T>0.15 \) GeV/c
Fit parameters f, k vs χ^2

$F=0.23$, $k=35$, $\mu=0.24$, $\chi^2=1.11\pm0.08$, $M=(5,225)$

$f=0.5$, $k=24$, $\mu=0.36$, $\chi^2=1.21\pm0.1$, $M=(10,265)$
MC Glauber fit: h^\pm multiplicity

F=0.23, k=35, $\mu=0.24$, $\chi^2=1.11\pm0.08$, M=(5,225)

MC Glauber fit is deviate from SMASH data for large multiplicity region
MC Glauber fit: h^{\pm} multiplicity

MC Glauber fit is in the good agreement with simulated input for the large multiplicity region.

$f=0.5$, $k=24$, $\mu=0.36$, $\chi^2=1.21\pm0.1$, $M=(10,265)$
Events in multiplicities $M \pm \Delta M$ have impact parameter in range $b \pm \sigma_b$
N_{ch} distribution in centrality classes

\[\sqrt{s_{NN}} = 7.7 \text{ GeV} \]

\[\sqrt{s_{NN}} = 11.5 \text{ GeV} \]
b distribution in centrality classes

$\sqrt{s_{NN}} = 7.7\ GeV$

$\sqrt{s_{NN}} = 11.5\ GeV$

No 90-100% centrality bin. Investigating.
N_{part} distribution in centrality classes

\begin{align*}
\text{Counts} & \text{:} & 10^0 & 10^1 & 10^2 & 10^3 & 10^4 & 10^5 \\
N_{\text{part}} & \text{:} & 0 & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400
\end{align*}

\begin{align*}
\text{Counts} & \text{:} & 10^0 & 10^1 & 10^2 & 10^3 & 10^4 & 10^5 \\
N_{\text{part}} & \text{:} & 0 & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400
\end{align*}

\begin{align*}
\langle N_{\text{part}} \rangle & \text{:} & 350 & 300 & 250 & 200 & 150 & 100 & 50 & 0 \\
\text{Centrality, } \% & \text{:} & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100
\end{align*}

- $\sqrt{s_{\text{NN}}}=7.7$ GeV
- $\sqrt{s_{\text{NN}}}=11.5$ GeV

Centrality Classes:

- 0.0\%-10.0\%
- 10.0\%-20.0\%
- 20.0\%-30.0\%
- 30.0\%-40.0\%
- 40.0\%-50.0\%
- 50.0\%-60.0\%
- 60.0\%-70.0\%
- 70.0\%-80.0\%
- 80.0\%-90.0\%
- 90.0\%-100.0\%
- 0\%-100\%
N_{coll} distribution in centrality classes