A MAPS based Inner Tracking System of the Multi-Purpose Detector at the NICA collider

Yuri Murin, VBLHEP JINR for the MPD ITS team
murin@jinr.ru

NICA

Yangtze
The physics case - an attempt to deconfine quarks through density fluctuations of the fireball under critical conditions

A role of the rare probes (heavy hyperons and charmed mesons) in search of hints of critical point

Transition from strips to pixels and the MAPS “invasion”

The new ALICE ITS2 saves NICA a generation period

The MPD ITS project and plans for its implementation
Look for a needle in a “hay” of tracks for rare events

The Inner Tracking System or Vertex tracker is a multilayer telescope which measures the position of particle hits positions to restore the track trajectory. It’s special task to be located as close as possible to the interaction point and to be as precise as possible to identify specific decays of particles carrying strangeness, charm or beauty i.e. S, C, or B - quarks
To deconfine quarks: to heat or to enhance density fluctuations

![Graph showing interaction rate vs. collision energy](image)

- Interaction rate [Hz]
- Collision energy $\sqrt{S_{NN}}$ [GeV]

2022 – 2025:
- SIS-100
- FAIR

NICA/BM@N II

HADES

STAR F.T.

STAR BES II

NiCA/MPD

NA-61/SHINE

Energy region of max. baryonic density

October, 2019, Warsaw, NICA Days-2019

Yu. Murin for the MPD ITS Team
The basic task for the Inner Tracking System

Identification of particles through inspection of Inverse Mass distributions $M^2=\text{sum}(E_i)^2-\text{sum}(P_i)^2$ (c=1)

$\Lambda \rightarrow p + \pi^-$

$\Xi^- \rightarrow \Lambda + \pi^-$

$\Omega^- \rightarrow \Lambda + K^-$

$D^+ \rightarrow K^- + \pi^+ + \pi^+$

$D^0 \rightarrow K^- + \pi^+$

$\Lambda_c \rightarrow p + K^- + \pi^+$
Owing to the industrial development of CMOS imaging sensors and the intensive R&D by HEP community

... several HI experiments have selected CMOS pixel sensors for their inner trackers and intensive R&D for ATLAS

STAR HFT
0.16 m² – 356 M pixels

CBM MVD
0.08 m² – 146 M pixel

ALICE ITS Upgrade (and MFT)
10 m² – 12 G pixel

sPHENIX
0.2 m² – 251 M pixel
New ALICE ITS#2: sharing of technology

A new ITS: closer to IP, thinner, higher position resolution

- Closer to IP: 39mm \rightarrow 22mm
- Thinner: \sim1.14% \rightarrow \sim 0.3% (for inner layers)
- Smaller pixels: 50µm x 425µm \rightarrow 27µm x 29µm
- Increase granularity: 20 chan/cm3 \rightarrow 2k pixel/cm3
- Faster readout: $\times 10^2$ Pb-Pb, $\times 10^3$ pp
- 10 m2 active silicon area: 12.5 G-pixels, σ \approx 5µm

ALPIDE (ALICE Pixel Detector) - Developed for the ALICE upgrade (ITS and MFT) will be used (or it is proposed) for several other HEP detectors and non-HEP applications

1.5 \leq η \leq 1.5

NICA MPD (@JINR) sPHENIX (BNL) proton CT (tracking) CSES – HEPD2 ...
The ALPIDE sensor

ALICE CMOS Pixel Sensor

CMOS Pixel Sensor using 0.18μm CMOS Imaging Process

- High-resistivity (> 1kΩ cm) p-type epitaxial layer (25μm) on p-type substrate
- Small n-well diode (2 μm diameter), ~100 times smaller than pixel => low capacitance (~fF)
- Reverse bias voltage (-6V < V_{BB} < 0V) to substrate (contact from the top) to increase depletion zone around NWELL collection diode
- Deep PWELL shields NWELL of PMOS transistors

\[C_{in} \approx 5 \text{ fF} \]

\[Q_{in} \text{ (MIP)} \approx 1300 \text{ e} \Rightarrow V \approx 40 \text{ mV} \]
The ALPIDE Readout

ALICE Pixel DEtector (ALPIDE)

1024 pixel columns

512 rows

signal processing circuitry integrated in pixel matrix

130,000 pixels / cm² 27x29x25 μm³
charge collection time <30ns (Vbb = -3V)
Max particle rate: 100 MHz/cm²
fake-hit rate: < 1 Hz/ cm²
power: ≈300 nW/pixel (<40mW/cm²)

Matrix Layout

Pixel Layout

L. Musa (CERN) – International Winter Meeting on Nuclear Physics, Bormio, 8-11 Jan 2019
New ALICE ITS#2 beats records on material budget

ALICE PInel DEtector (ALPIDE)

Inner Barrel Production completed and all layers assembled

L. Musa (CERN) – International Winter Meeting on Nuclear Physics, Bormio, 8-11 Jan 2019

Tilted staves with overlap, inclined tracks

Mean X/Y = 0.260%

Single stave, perpendicular tracks

Mean X/Y = 0.358%
New ALICE ITS#2:and number of pixels

ALICE Pixel Detector (ALPIDE)

102 Million pixel, average noise uniform ~ 5e

Layer-4

Layer-6
Plans for ALICE ITS#3: exchange of the IB

Vertex Detector (innermost 3 layers)

Truly cylindrical vertex detector

- Beampipe
 - IR: 16 mm
 - ΔR: 0.5 mm
- Pipe: \(r \approx 16 \text{ mm}, \Delta R = 0.5 \text{ mm} \)
- L0: \(r \approx 18 \text{ mm}, \text{L1: } r \approx 24 \text{ mm}, \text{L2: } r \approx 30 \text{ mm} \)

0.05% \(x/X_0 \) per layer

Layers supported by high-thermal conductive carbon foam

- Open cell carbon foam
- Open cell carbon foam

L. Musa (CERN) – International Winter Meeting on Nuclear Physics, Bormio, 8-11 Jan 2019
Stage I: TPC, TOF, ECAL, ZDC, FFD + ITS(OB)

Stage II: ITS(IB) + EndCap (CPC, Straw, TOF, ECAL)

Transfer of High Tech Instrumentation Know-How from CERN to NICA-MPD

Stage I: overall commissioning starts in 2022 (t.b.c.)

October, 2019, Warsaw, NICA Days-2019

Yu. Murin for the MPD ITS Team
CERN will procure, test and deliver to NICA

- 19'000 ALPIDE Monolithic Active Pixel Sensors for the MPD ITS
- 4'500 SAMPA electronic circuits for the TPC readout
- 5'000 FEAST DC/DC converters for the ECAL MPD
- Jigs and fixtures for module and supermodule assembly for the MPD ITS
- Training of personal for assembly and QA certification modules and supermodules of the MPD ITS
- Provision of complete technical and commercial information on parts of the new ALICE Inner Tracking System, including drawings, internal technical reports, quotes, etc.
MPD ITS based on the ALPIDE MAPS CERN technology

Beam pipe $\varnothing = 40$ mm
ITS pointing resolution within STAR-ALICE toy model

R-\(\phi\) Pointing Resolution .vs. Pt

![Graph showing R-\(\phi\) Pointing Resolution vs. Pt for ALICE and MPD with New ITS, Old ITS, Ø = 40 mm, Ø = 50 mm, Ø = 60 mm]

October, 2019, Warsaw, NICA Days-2019

Yu. Murin for the MPD ITS Team
Selection criteria

D^0 selection parameters:
- distances of closest approach to the collision vertex $DCA_{\pi,K}$,
- two-track separation DCA_D,
- decay path λ_D,
- pointing angle θ_D.

Selection criteria:

$DCA_{\pi} > C_1$ \&\& $DCA_K > C_2$ \&\& $DCA_D < C_3$ \&\& $\lambda_D > C_4$ \&\& $\theta_D < C_5$

The parameters of the corresponding selections are optimized by maximizing the **signal significance**:

$$Sg(a) = \int_{0}^{a} \frac{S}{\sqrt{S+B}} da$$

where S and B are the estimated numbers of the signal and background events.
Example: cuts selections for D^0

- $dcaK > 0.01$ cm & $dcaPi > 0.01$ cm & $distPiK < 0.02$ cm & $path(D^0) > 0.025$ cm & $angle(D^0) < 0.2$ rad
D\(^+\) and D\(^0\) reconstruction

\[t_1 = t_2 = t_3 = 50\mu \text{ (IB ITS3)} \quad t_4 = t_5 = 700\mu \text{ (OB ITS2)} \]

\[M(\pi^+, K^-): \text{signal+background}(100M) \]

\[M(\pi\pi K): \text{signal+background}(100M) \]

DCA(\(\pi, K, D^0\)), path(\(D^0\)), angle(\(D^0\)) cuts

October, 2019, Warsaw, NICA Days-2019
Strange particle reconstruction results

\[M(\pi,\rho): \text{signal+background (5K)} \]

\[M(\Lambda,\pi): \text{signal+background (5K)} \]

\[M(\Lambda,K^-): \text{signal+background (1M)} \]

October, 2019, Warsaw, NICA Days-2019

Yu. Murin for the MPD ITS Team
Impact of Beam pipe diameter on efficiency

D-meson parameters in 100M central Au+Au collisions at $\sqrt{s_{NN}} = 9$ GeV

<table>
<thead>
<tr>
<th>Particle</th>
<th>D^0</th>
<th>D^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decay channel</td>
<td>$D^0 \rightarrow K^- + \pi^+$</td>
<td>$D^+ \rightarrow K^- + \pi^+ + \pi^+$</td>
</tr>
<tr>
<td>Multiplicity (HSD)</td>
<td>10^{-2}</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>BR, %</td>
<td>3.9</td>
<td>9.1</td>
</tr>
<tr>
<td>IB option</td>
<td>ITS3(50μ)</td>
<td>ITS2(200μ)</td>
</tr>
<tr>
<td>S/B(2σ)</td>
<td>0.43</td>
<td>0.10</td>
</tr>
<tr>
<td>Significance</td>
<td>15.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Efficiency, %</td>
<td>1.9</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Current limitations of experimental data on D meson

Thermal generator: D meson’s p_t - spectrum

Abdel Nasser TAWFIK† and Ehab ABBAS
Thermal Description of Particle Production in Au-Au Collisions at STAR Energies

Yu. Murin for the MPD ITS Team
MC and reconstructed p_t-spectra of D^0-mesons and their decay products

- **D⁰ mesons**
- **Pions**
- **Kaons**
ITS realization in two Steps (OB first) due to BP sequence

Stage I: Installation of OB (2022-23)

Stage II: OB+IB (2022+25) ?

~ 9500 ALPIDE MAPS in 5 cylinders of 2 barrels

4,9 \cdot 10^9 pixels, active area 3.9 m^2.

Stage I: 64 mm in diameter

Stage II: 38 mm in diameter
Current Activities
1. Mechanics for integration of ITS with Beam Pipe and TPC - JINR

October, 2019, Warsaw, NICA Days-2019
Yu. Murin for the MPD ITS Team
Current Activities
2. Start production of ultralight CF mechanics in SPbSU and VBLHEP
Current Activities
3. Start Assembly of HICs in Dubna and China (2020 Q1) and Staves (2021 Q1)

Truss length is 1540 mm. Modules (HICs) are located on two cooling plates. OB stave carriers 196 sensors. The MPD ITS need is 42 OB staves.
Planned Activities
4. Development of ITS3 together with ALICE ITS3 team
Planned Activities
5. Preparing the Technical Design Report and Organization of the MPD ITS Consortium

Technical Design Report

The Inner Tracking System
of the MPD experiment

Dec. 2019
Conclusions and summary
major milestones of the MPD ITS project (tentatively!)

- **2018–2019** – simulations and start of delivery of parts from CERN
- **2019** – organization of the Russian-Chinese Consortium
- **2019** – Writing TDR (Draft)
- **2019–2020** – Production of first HICs at VBLHEP and CCNU
- **2020–2021** – Mechanics including parts for integration
- **2020–2021** – updating the readout chain (with China and ?)
- **2020–2023** – R@D effort on IB together with ALICE
- **2021–2023** – Production HICs, assembly of OB staves (with China)
- **2023 (?)** – ITS-OB assembly, bench testing, commissioning
- **2025 (?)** – ITS-OB+IB commissioning (Stage II)
The MPD-ITS project is both scientific- and time-wise well justified

The project has a solid reason to be accomplished in two stages

The MPD-ITS(OB) (stage 1) one is now recognized and approved for financing at JINR

The MPD-ITS(IB) (stage 2) contains R@D proposed to be performed under the supervision of ALICE Collaboration (ITS-3)

The project effort due to its technical complexity cannot be undertaken by JINR alone and calls for organization of a Consortium of Institutes from Russia and China (and elsewhere!) functioning at least till 2025
Thank you for attention and RFBR for GRANT # 18-02-401119!