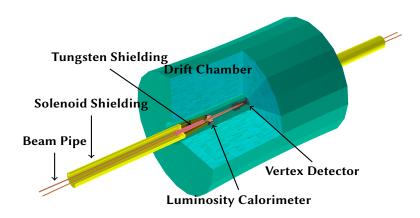
Tracking for the IDEA detector

Niloufar Alipour Tehrani

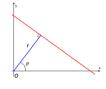
WG11 Detector Design Meeting

CERN 7 March 2019



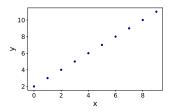
Introduction

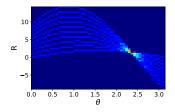
- Hough transform (HT): feature extraction in image analysis, computer vision, ...
 - Identification of lines, ellipses, circles
 - Can be used for the pattern recognition of the tracks in the drift chamber
 - The HT can be combined with Tricktrack (c.f. FCCSW) which is used for seeding in the VXD and limit the search region in the drift chamber.
 - ▶ Longer term plan ⇒ implementation in ACTS
- In this talk:
 - Detection of single particle tracks using the HT
 - First results of tracking with incoherent pair background


The IDEA detector as simulated & visualized with FCCSW

Hough Transform principle: identification of a simple line

Represented as a point (b, m) in the parameter space


$$y = m \cdot x + b \tag{1}$$



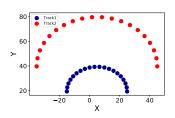
▶ Hough space: (r, θ)

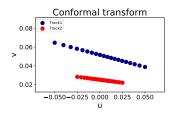
$$r = x \cdot \cos(\theta) + y \cdot \sin(\theta) \tag{2}$$

▶ A line corresponds to local maxima in the Hough space.

HT & Conformal mapping: identification of circles

- ▶ A track in B field \Rightarrow helix (circle in (x, y) plane)
- Use conformal mapping to map the circle into line and then apply HT
- Circle equation with center (a, b) and radius R


$$(x-a)^2 + (y-b)^2 = R^2$$
 (3)


 Conformal mapping: transform the circle into a straight line

$$u = \frac{x}{x^2 + y^2}, \quad v = \frac{y}{x^2 + y^2}$$
 (4)

▶ If $R^2 = a^2 + b^2$, straight lines are of the form:

$$v = \frac{1}{2b} - u\frac{a}{b} \tag{5}$$

Identification of circles (2)

Hough Transform for a straight line

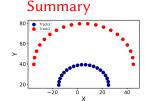
$$\rho = u \cdot \cos(\phi) + v \cdot \sin(\phi) \tag{6}$$

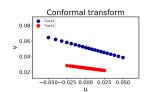
► The bending radius of the tracks: R

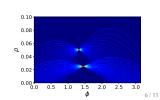
$$R = \frac{1}{2 \cdot \rho}$$

 $\frac{1}{2 \cdot \rho} \tag{7}$

0.10 0.08 0.06

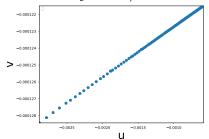

0.04 0.02 0.00 0.c

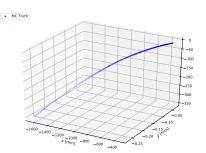

► The center of the circle (a, b)

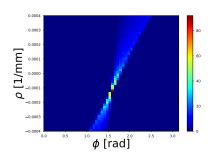

$$a = \frac{\cos(\phi)}{2 \cdot \rho} \tag{8}$$

$$b = \frac{\sin(\phi)}{2 \cdot \rho} \tag{9}$$

2.0

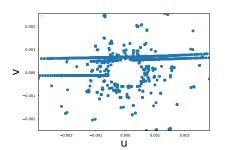


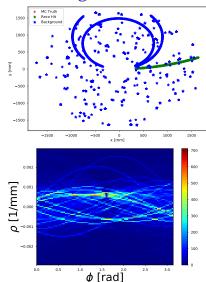




Hough transform: single tracks

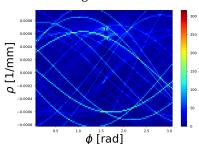
- Particle gun: 2.4 GeV muon
- ► B = 2 T
- Bending radius: 4 m
- MC Truth position corresponds to the intersection of the track with the wire
- ► Reconstructed hit: MC hit smeared with the single-hit resolution ($\sigma_{x,y}$ = 0.1 mm and σ_z = 1 mm)





A particle track combined with the background

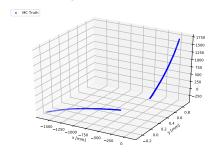
- ► Particle gun: 2.4 GeV muon
- 1 BX of incoherent pair background at the top stage

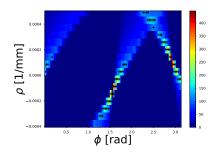


All the tracks (event & background tracks) are visible in the Hough space.

Finding the crossing points in the Hough space

- ▶ Visually, the tracks are detected easily in the Hough space
- ► Automatic detection of the crossing points (or the maxima)
 - ► The bin size needs to be optimized
- ▶ HT without background
 - 20001 400 330 300 220 200 150


► HT with background



- ► In the Hough space, select only bins more than 112 hits (total number of layers in the DCH)
- ► Cluster positions with the highest number of hits ⇒ tracks
- The background can be also reduced by a timing cut

Example: 2 particle tracks

Particle gun: 2.4 GeV muon

- ▶ DBSCAN clustering algorithm used with a distance of $\sqrt{2}$ (c.f. scikit-learn)
- ▶ 4 clusters detected
- ► To do: remove the "ghost" clusters/tracks

Conclusions

- A first implementation of the Hough Transform is available
- Single particles tracks are well detected
 - Visually and also by the detection of the crossing point (maximum) in the Hough space
 - Information on the bending radius of the track is obtained directly
- Parameters to be optimized for finding the maxima in the Hough space
 - Clustering for finding the maxima
 - For the pair background, a timing cut to be applied