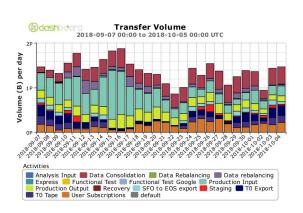
Rucio

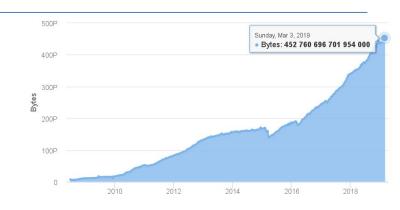
EUCLID CERN Technical Meeting

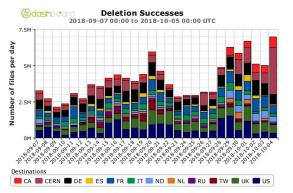
Mario Lassnig
on behalf of the Rucio team

Rucio in a nutshell

- Rucio provides a complete and generic scientific data management service
 - Seamless integration of scientific and commercial storage and network systems
 - Data can be scientific observations, measurements, objects, events, images saved in files
 - Facilities can be distributed at multiple locations belonging to different administrative domains
 - Designed with more than a decade of operational experience in very large-scale data management
- Rucio manages location-aware data in a heterogeneous distributed environment
 - Creation, location, transfer, deletion, and annotation of data
 - Orchestration of dataflows with both low-level and high-level policies
- Principally developed by and for the High-Energy Physics experiment ATLAS
- Rucio is open source and available under Apache 2.0 license
- Make use of established toolchains for and with the community 😱 🥮 🔳 🛫







Data management for ATLAS

- A few numbers to set the scale
 - o 1B+ files, 450 PB of data, 400+ Hz interaction rate
 - Up to 4M files/2.5 PB transferred per day
 - 10PB access from clients per day; >1000 active users
- Increase 1+ order of magnitude for LHC Run 4

Community

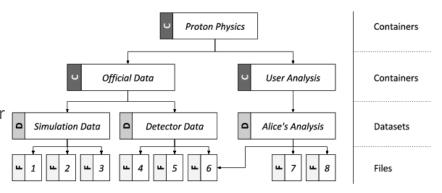
for Astronomy with the SKA

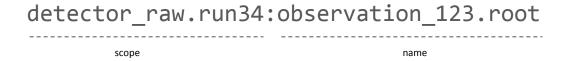
Community

- 1st Rucio Community Workshop was held at CERN on March 1st-2nd 2018 to present Rucio to scientific communities
- Rucio Coding Camp 2018 in November 2018
- 2nd Rucio Community Workshop was held in Oslo on Feb 28th - Mar 1st
- Rucio Coding Camp 2019 in October
- Weekly Development <u>meetings</u>

Rucio main functionalities

- Provides many features that can be enabled selectively
 - File and dataset catalog
 - Transfers between facilities including disk, clouds, and tapes
 - Web-UI, CLI, and API to discover/download/upload/transfer/annotate data
 - Extensive monitoring for all dataflows
 - Support for caches and CDN workflows
 - Expressive policy engines with rules and subscriptions
 - Automated corruption identification and recovery
 - Data popularity based replication
 - 0 ...
- Rucio can be integrated with Workload and Workflow Management System
 - Already supporting PanDA, the ATLAS WFMS
 - Belle-II is driving the integration with DIRAC


Operations model


- Objective was to minimise the amount of human intervention necessary
- Large-scale and repetitive operational tasks can be automated
 - Bulk migrating/deleting/rebalancing data across facilities at multiple institutions
 - Popularity driven replication and deletion based on data access patterns
 - Management of disk spaces and data lifetime
 - Identification of lost data and automatic consistency recovery
- Administrators at the sites are not operating any Rucio service
 - Sites only operate their storage exposed via protocols (POSIX, ROOT, HTTP, WebDAV, S3, gsiftp, ...)
 - Users have transparent access to all data in a federated way
- Easy to deploy
 - PIP packages, Docker containers, Kubernetes

Rucio concepts - Namespace

- All data stored in Rucio is identified by a Data IDentifier (DID)
 - With both fixed and generic metadata support
- There are different types of DIDs
 - Files
 - Datasets Collection of files
 - Container Collection of dataset and/or container
- Each DID is uniquely identified and composed of a scope and name, e.g.:

Rucio concepts - Declarative data management

- Express what you want, not how you want it
 - e.g., "Three copies of this dataset, distributed evenly across multiple continents, with at least one copy on TAPE"

Replication rules

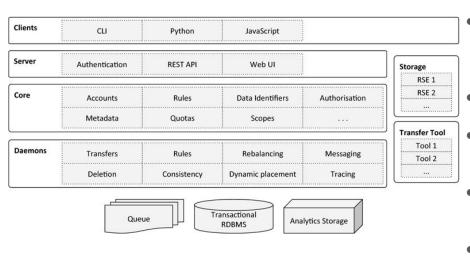
- Rules can be dynamically added and removed by all users, some pending authorisation
- Evaluation engine resolves all rules and tries to satisfy them by requesting transfers and deletions
- Lock data against deletion in particular places for a given lifetime
- Primary replicas have indefinite lifetime rules
- Cached replicas are dynamically created replicas based on traced usage and popularity
- Workflow system can drive rules automatically, e.g., job to data flows or vice-versa

Subscriptions

- Automatically generate rules for newly registered data matching a set of filters or metadata
- e.g., project=data17_13TeV and data_type=AOD uniformly across T1s

Rucio concepts - RSEs

- Rucio Storage Elements (RSEs) are logical entities of space
 - No software needed to run at the facility except the storage system, e.g., EOS/dCache/S3, ...
 - RSE names are arbitrary (e.g., "CERN-PROD_DATADISK", "AWS_REGION_USEAST", ...)
 - Common approach is one RSE per storage data class at the site
- RSEs collect all necessary metadata for a storage system
 - o Protocols, hostnames, ports, prefixes, paths, implementations, ...
 - Data access priorities can be set, e.g., to prefer a different protocol for LAN-only access
- RSEs can be assigned metadata as well
 - Key/Value pairs (e.g., country=UK, type=TAPE, support=brian@unl.edu)
 - You can use RSE expressions to describe a list of RSEs (e.g. country=UK&type=TAPE)
 for the replication rules



Rucio concepts - Metadata

- Rucio supports different kinds of metadata
 - File internal metadata, e.g., size, checksum, creation time, status
 - Physics metadata, e.g., number of events, lumiblock, cross section
 - Workflow metadata, e.g., which task or job produced the file
 - Management internal metadata: necessary for the organisation of data, e.g., replication factor
- Metadata are custom attributes on data identifiers
 - Enforcement possible by types and schemas
 - Naming convention enforcement and automatic metadata extraction
- Provides additional namespace to organise the data
 - Searchable via name and metadata
 - Aggregation based on metadata searches
 - Can also be used for long-term reporting, e.g., evolution of particular metadata selection over time

Architecture

Servers

- HTTP REST/JSON APIs
- Token-based security (x509, ssh, kerberos, ...)
- Horizontally scalable

Daemons

- Orchestrates the collaborative work
 e.g., transfers, deletion, recovery, policy
- Horizontally scalable

Messaging

STOMP / ActiveMQ-compatible

Persistence

- Object relational mapping
- o Oracle, PostgreSQL, MySQL/MariaDB, SQLite

Middleware

Connects to well-established products,
 e.g., FTS3, DynaFed, dCache, EOS, S3, ...

Python

Support for Python2 and Python3

Monitoring & analytics

ATLAS Rucio U Montario Republic de material de la compansa della c

Account Usage Overview (in TB)

RucioUI

- Provides several views for different types of users
- Normal users: Data discovery and details, transfer requests and monitoring
- Site admins: Quota management and transfer approvals
- Central administration: Account / Identity / Site management

Monitoring

- Internal system health monitoring with Graphite / Grafana
- Transfer / Deletion / ... monitoring built on HDFS, ElasticSearch, and Spark
- Messaging with STOMP

Analytics and accounting

- \circ e.g., Show which the data is used, where and how space is used, ...
- Data reports for long-term views
- Built on Hadoop and Spark

Development

- Release cycle and support period
 - Bi-weekly patch releases (Bugfixes, minor enhancements)
 - ~3 feature (named) releases per year (Features, major changes)
 - Once a year a feature version is designated as a Long-Term Support (LTS) release
- Development organized as open-source community project
 - Weekly development meetings; Release roadmap for each feature release
 - Contributors describe their planned developments, receive comments from community
 - Extensive integration and unit testing across all supported databases

Current developments

- Multi-experiment data management
 - Smart sharing of infrastructure across experiments
 - Smart sharing of data across experiments
- Quality of Service
 - Replication rules can take storage quality descriptions into account
- Expanding support for commercial cloud providers
 - Transparent Google Cloud and S3 (OpenStack, AWS) integration already supported
- Capability-based authentication, authorisation, and permissions
 - O Data embargoes, JWT bearer tokens, Macaroons, OpenID, EduGain
- Network interface integration with SDNs
- Integration with research publication databases, e.g., Zenodo

EUCLID and Rucio?

- The scientific value of the data collected by EUCLID goes far beyond cosmology
- Helps out with targets and sources for observatories such as SKA
- Rucio is already seeing widespread adoption in the astro & astroparticle fields
- Can Rucio help
 - with EUCLIDs data management and distribution?
 - connect the astro missions for easy data sharing?

We are happy to help setting up a demonstrator!

More information

Website

http://rucio.cern.ch

Documentation

https://rucio.readthedocs.io

Repository

https://github.com/rucio/

Images

https://hub.docker.com/r/rucio/

Online support

https://rucio.slack.com/messages/#support/

Developer contact

rucio-dev@cern.ch

Journal article

https://doi.org/10.1007/s41781-019-0026-3

Twitter

https://twitter.com/RucioData