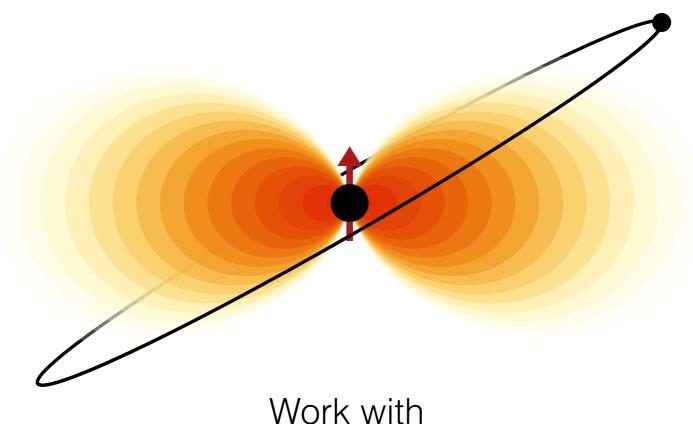
Probing Ultralight Bosons with Binary Black Holes in the Mid-frequency Band

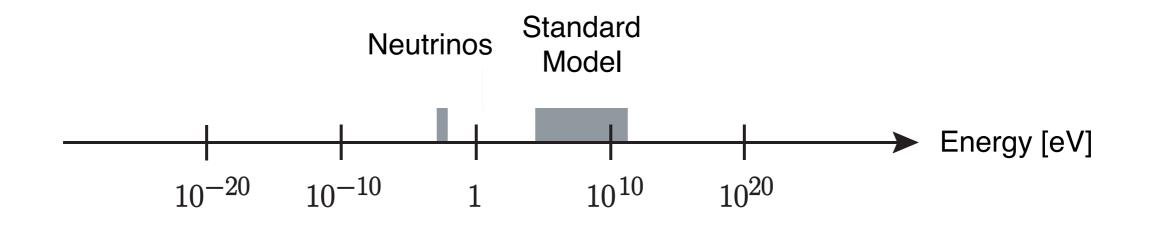
Horng Sheng Chia

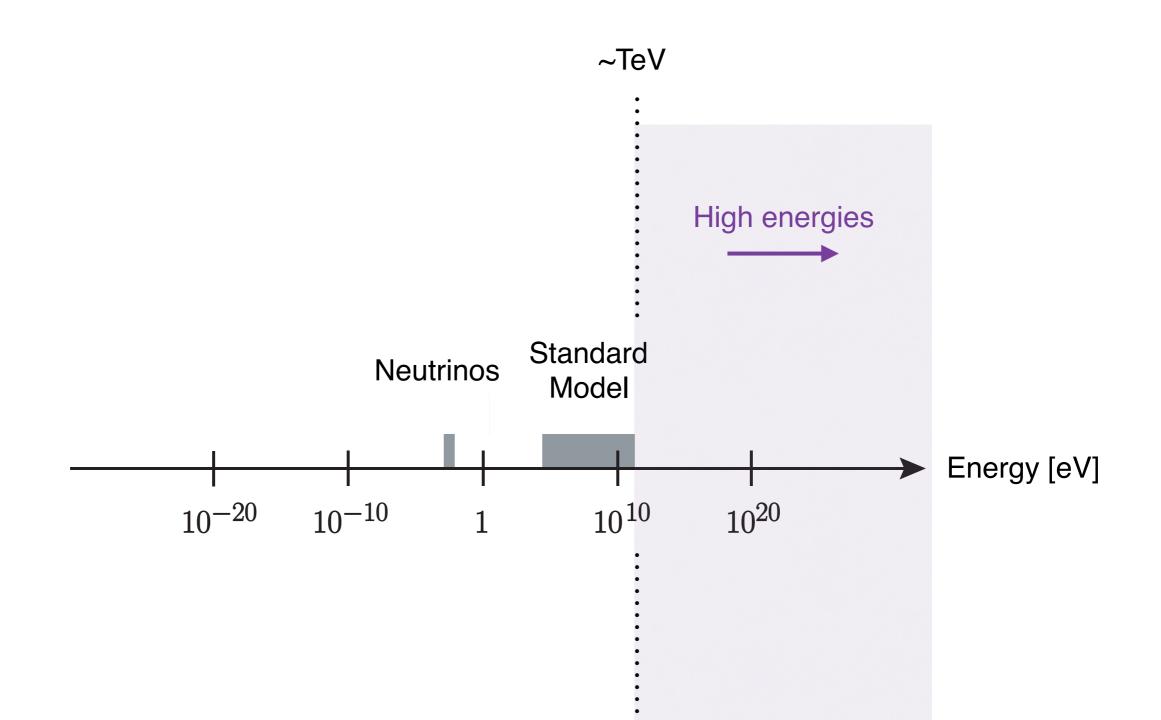
University of Amsterdam

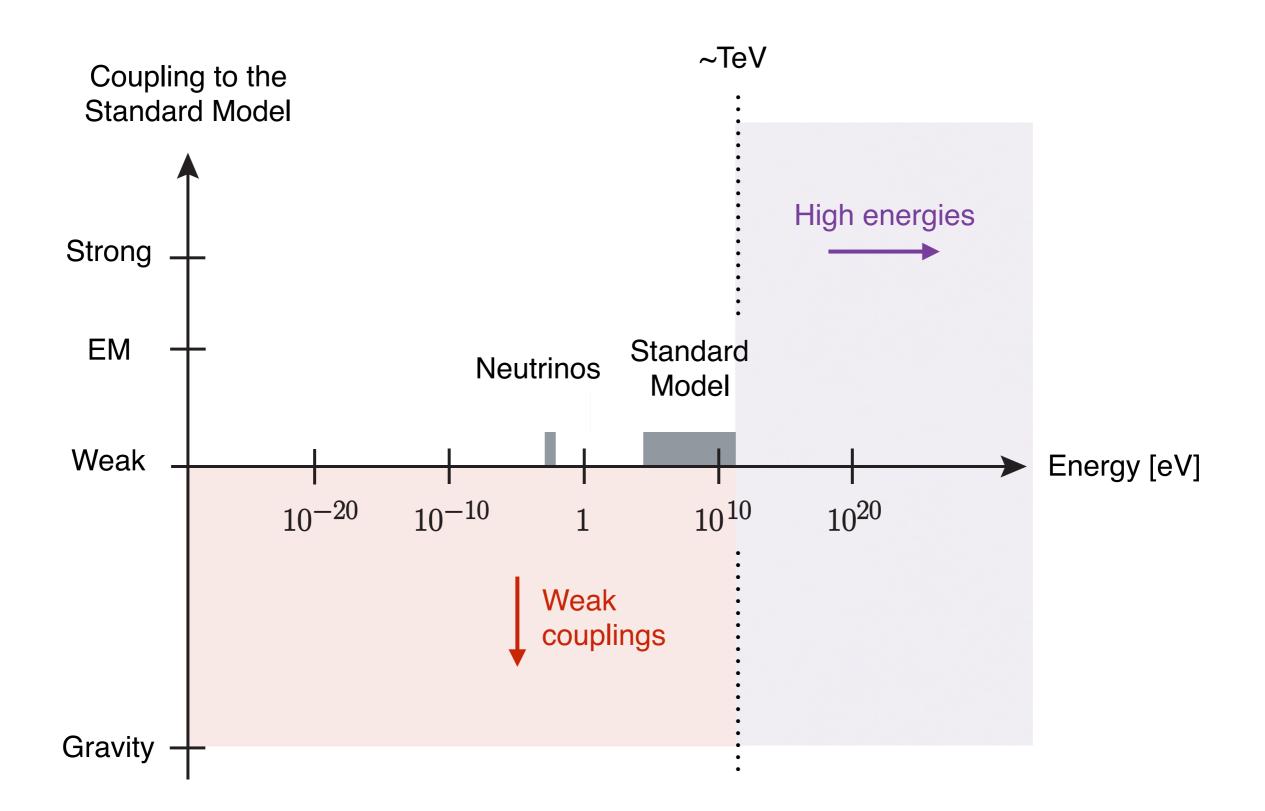


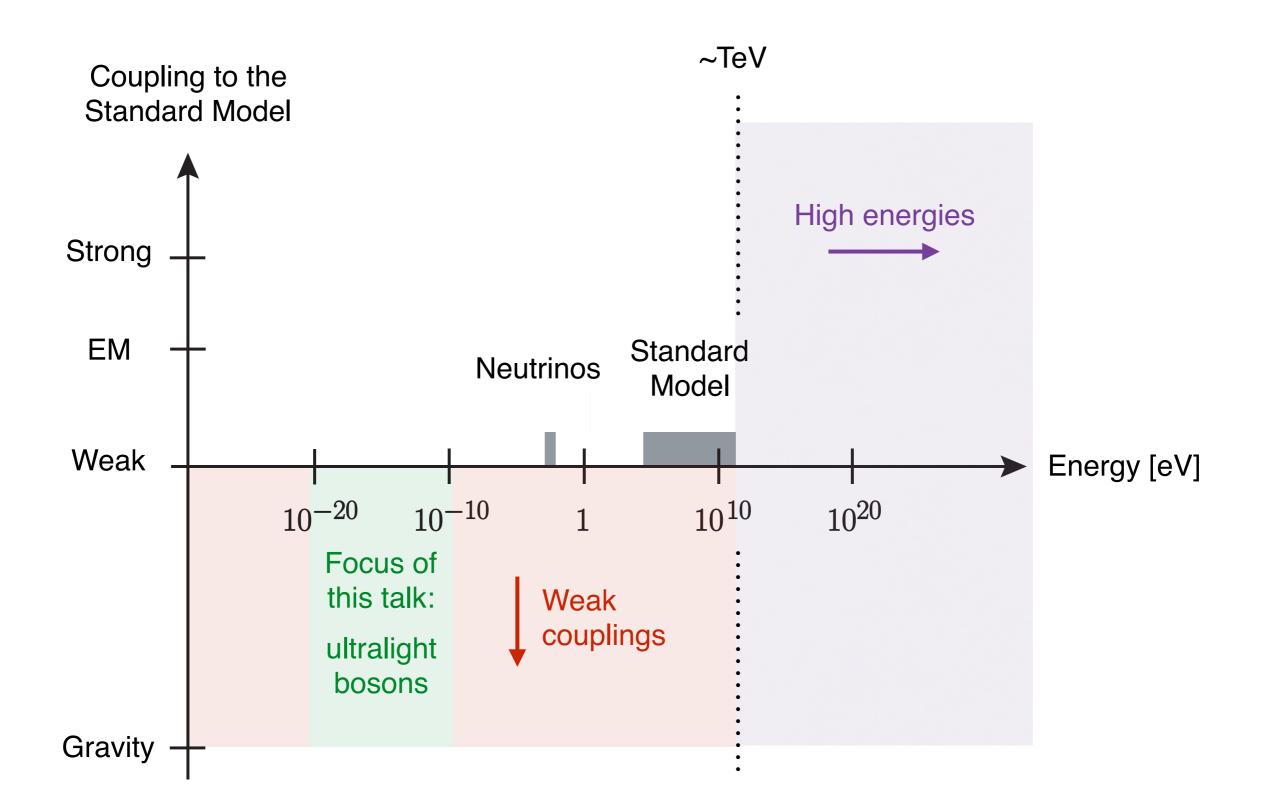
Daniel Baumann and Rafael Porto [1804.03208]

First AION Workshop Imperial College London, March 2019



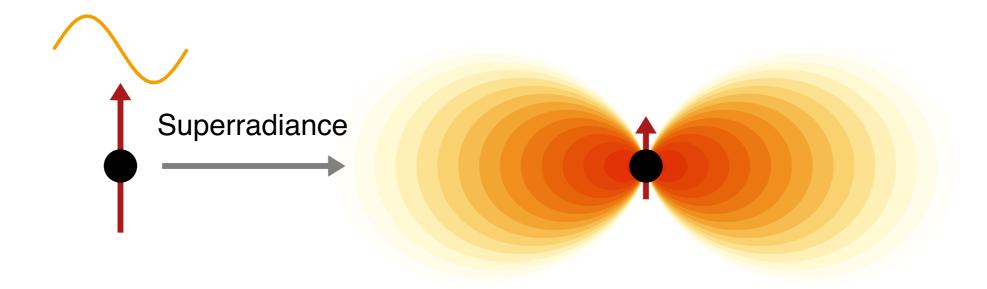






The Gravitational Atom

Ultralight boson condensates can be created around rotating black holes, if the Compton wavelength of the field ~ size of the black hole.

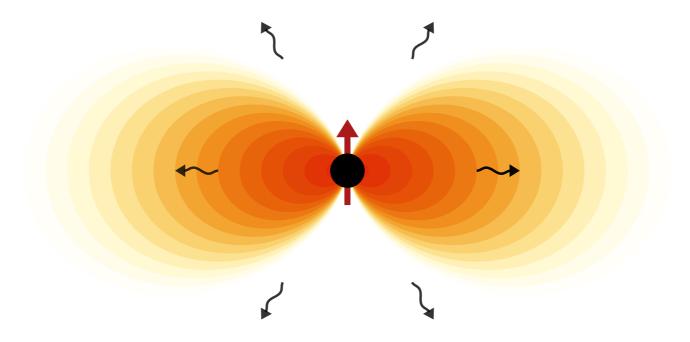


The structure resembles the hydrogen atom and is therefore often called the 'gravitational atom'.

Zeldovich (1972) Starobinsky (1973) Arvanitaki et al. [0905.4720]

Gravitational Atom in Isolation

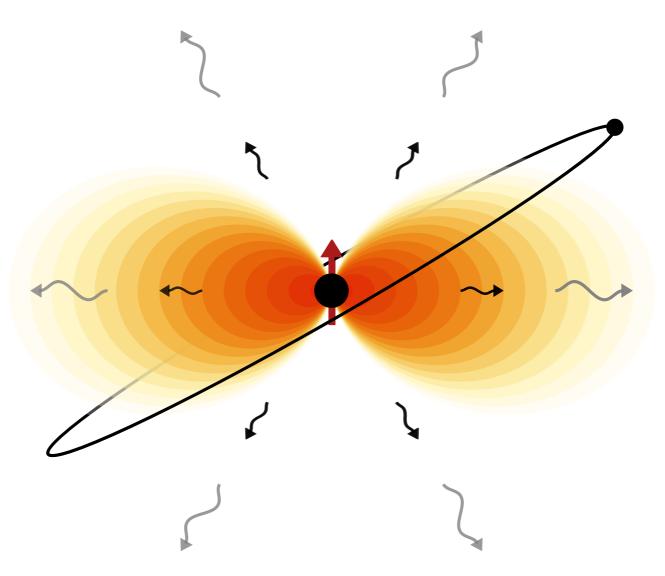
These clouds emit continuous, monochromatic gravitational waves.



Arvanitaki, Dubovsky [1004.3558]

Gravitational Atom in Binaries

A binary companion introduces **new dynamics** to the cloud.



Cloud perturbs the companion, affecting GW signal from the binary.

Outline

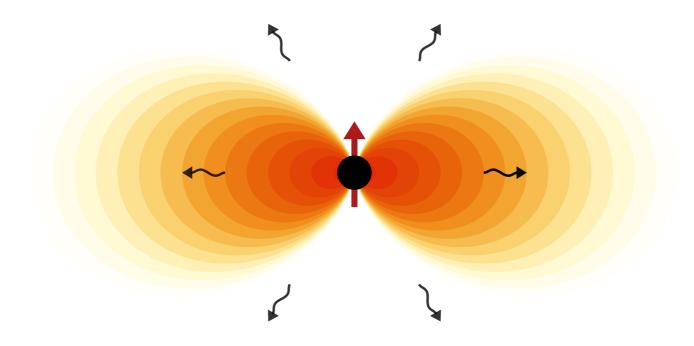
I. Gravitational Atom in Isolation

- Properties of the cloud
- Signal from the cloud

II. Gravitational Atom in Binaries

- \cdot Dynamics of the cloud in a binary resonances
- Signal from the binary

I. Gravitational Atom in Isolation



Scalar Field in Kerr Background

Scalar field of mass μ around a Kerr background satisfies

$$\left(g^{ab}\nabla_a\nabla_b-\mu^2\right)\Phi(t,\mathbf{r})=0$$

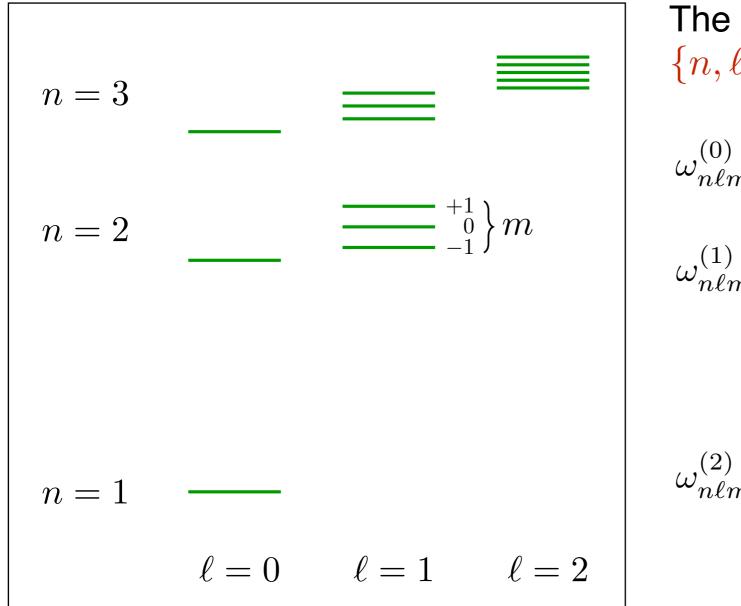
Substituting the ansatz $\Phi(t, \mathbf{r}) = e^{-i\omega t + im\phi}R(r)S(\theta)$, the radial equation at large distances satisfies a hydrogen-like equation

$$\left[-\frac{1}{2\mu r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}}{\mathrm{d}r}\right) - \frac{\alpha}{r} + \frac{\ell(\ell+1)}{2\mu r^2} + \frac{\mu^2 - \omega^2}{2}\right]R = 0$$

where

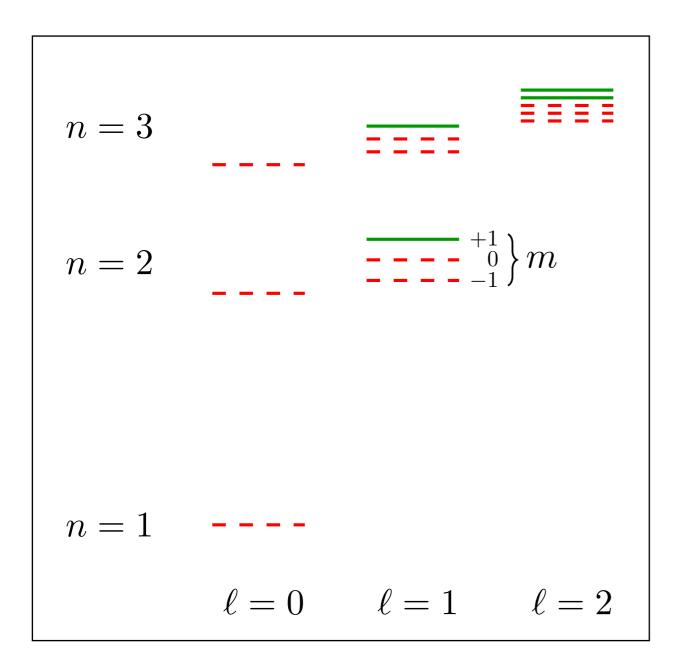
$$\alpha \equiv M\mu = \frac{\text{Gravitational radius}}{\text{Compton wavelength}}$$

Energy Spectrum



The eigenstates are labelled by $\{n, \ell, m\}$, and the spectrum is $\omega_{n\ell m}^{(0)} = \mu \left(1 - \frac{\alpha^2}{2n^2} \right) \text{ Bohr energy}$ $\omega_{n\ell m}^{(1)} = \mu \left(-\frac{\alpha^4}{8n^4} + \frac{(2\ell - 3n + 1)\,\alpha^4}{n^4(\ell + 1/2)} \right)$ Relativistic Fine structure kinetic energy splitting $\omega_{n\ell m}^{(2)} = \mu \left(+ \frac{2 \left(a/M \right) m \alpha^5}{n^3 \ell (\ell + 1/2) (\ell + 1)} \right)$ Hyperfine splitting

Growing and Decaying Modes



Due to the boundary condition at the black hole horizon, these are quasi-stationary states:

$$\omega_{n\ell m} \to \omega_{n\ell m} + i\Gamma_{n\ell m}$$

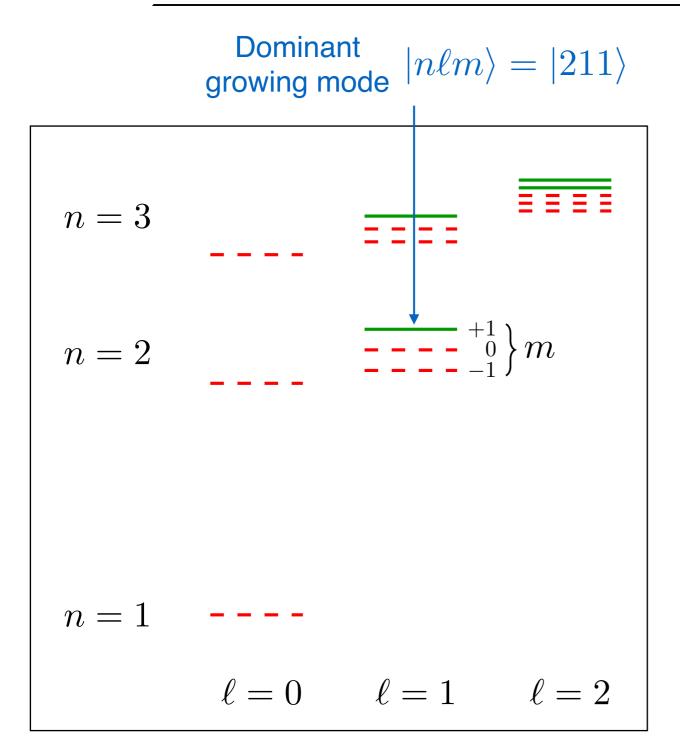
where $\Gamma_{n\ell m}$ is the instability rate

$$\Gamma_{n\ell m} \propto (m\Omega_H - \omega_{n\ell m}) \, \alpha^{4\ell+5}$$

which gives rise to **growing** and **decaying** modes.

Detweiler (1980)

Dominant Growing Mode



For the $|211\rangle$ mode,

$$\Gamma_{211} \propto (m\Omega_H - \omega_{211})\alpha^9$$

Within the age of the universe, a black hole with mass M can grow clouds within the range

 $\alpha\simeq 0.005-0.5$

which translates into probing **two orders-of-magnitude** of the ultralight boson mass μ

Detweiler (1980)

Signal from the Cloud

These clouds emit **continuous**, **monochromatic** gravitational waves, with frequency

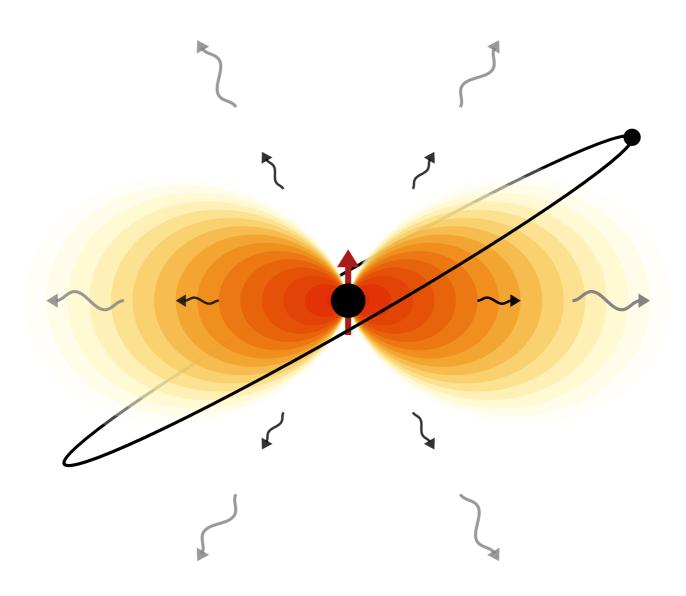
$$f_c \simeq 0.48 \,\mathrm{Hz} \left(\frac{\mu}{10^{-15} \,\mathrm{eV}}\right)$$

For mid-frequency band detectors, this translates into probing ultralight bosons with masses

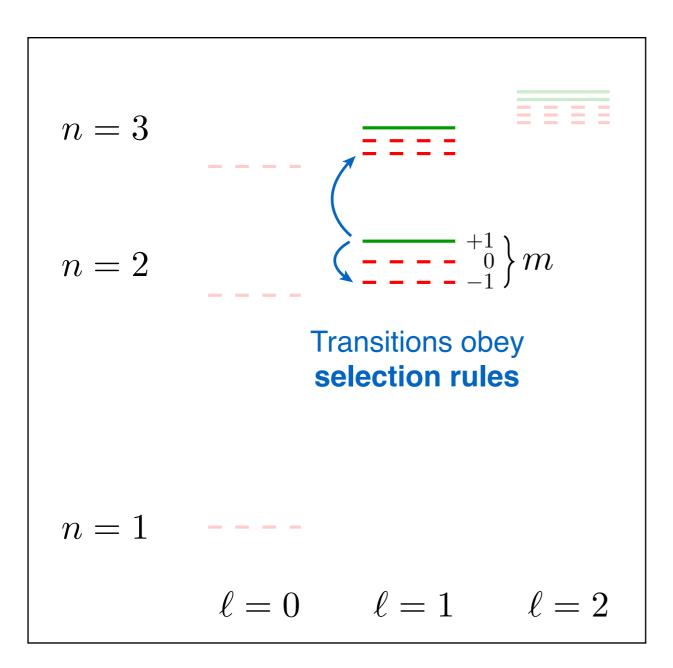
$$\mu \sim 10^{-16} - 10^{-14} \,\mathrm{eV}$$

This signal can either be **resolvable**, or contribute to the **stochastic GW background**.

II. Gravitational Atom in Binaries



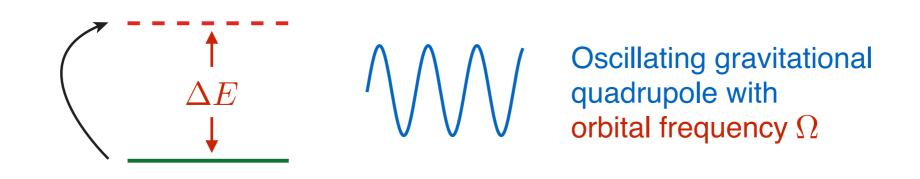
Level Mixings



In a binary system, the gravitational quadrupole created by the companion can induce **transitions** between the energy levels.

Rabi Oscillations

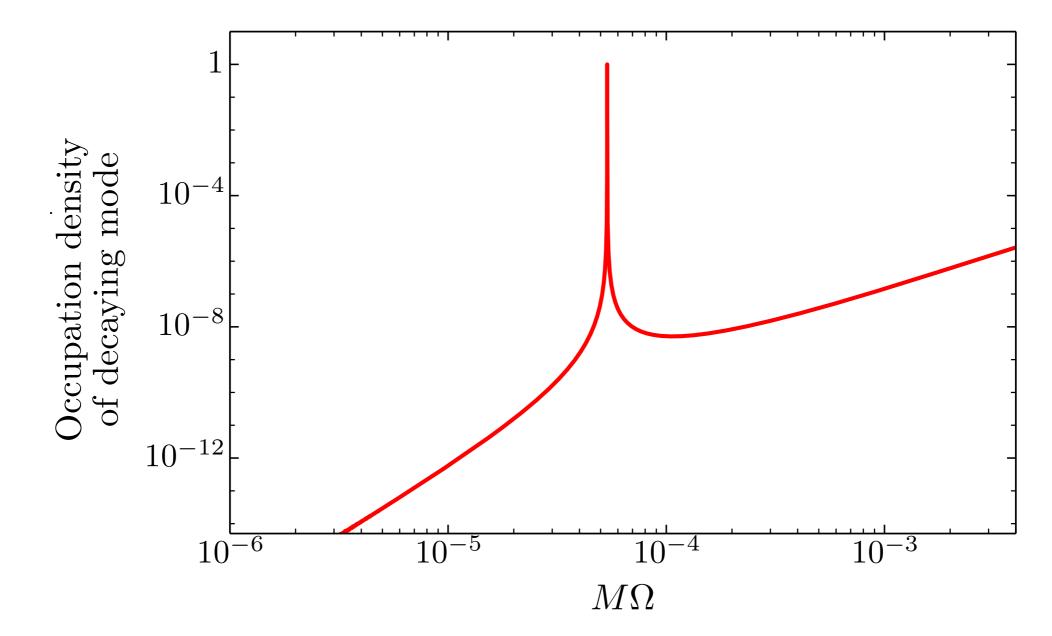
Rabi oscillations can be excited between the two energy level system.



When the orbital frequency of the inspiral matches the energy difference between the two energy levels, **resonances** occur.

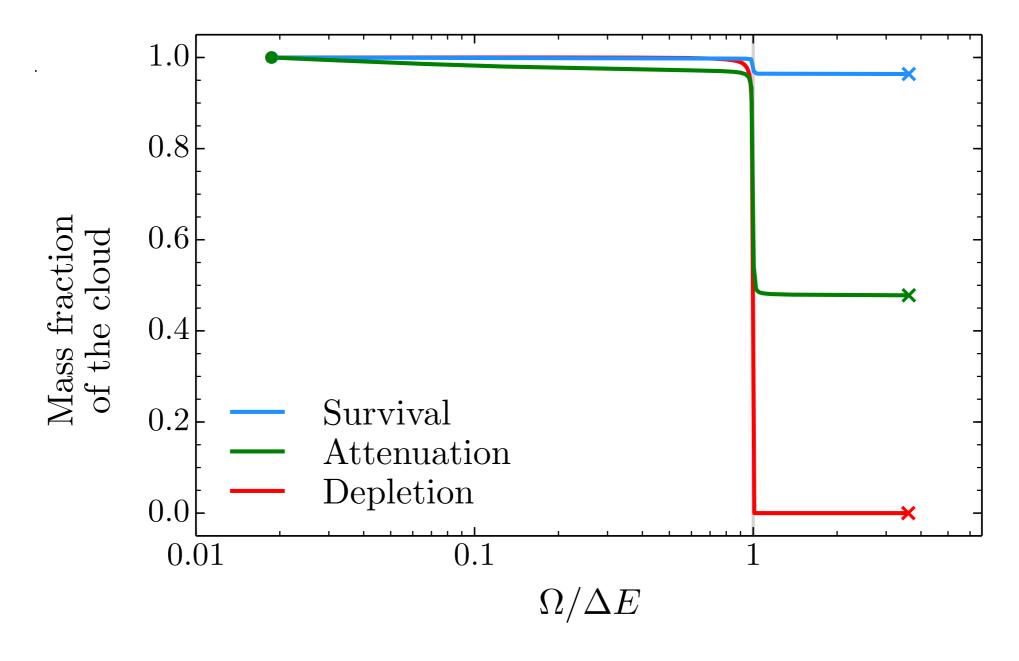
Resonance Depletion

As the orbit shrinks due to GW emission, the binary scans through the resonance.



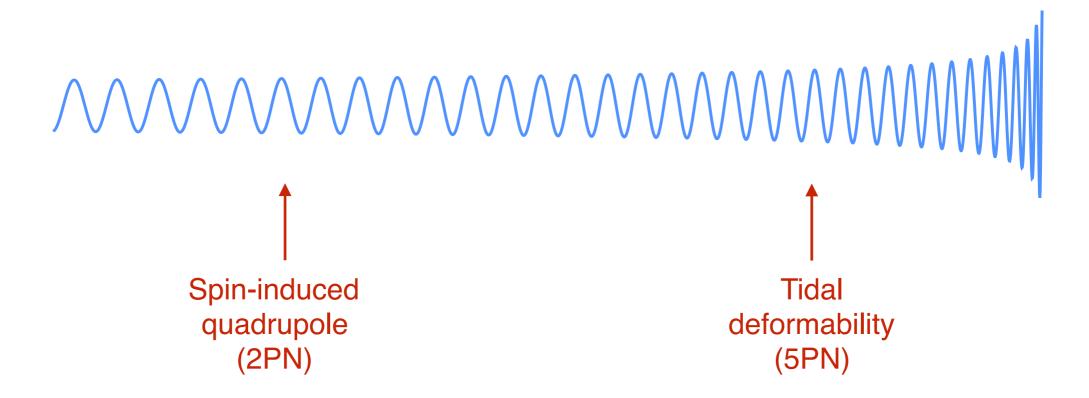
Resonance Depletion

Depending on parameters, there are 3 qualitatively different scenarios:



Signals from the Binary

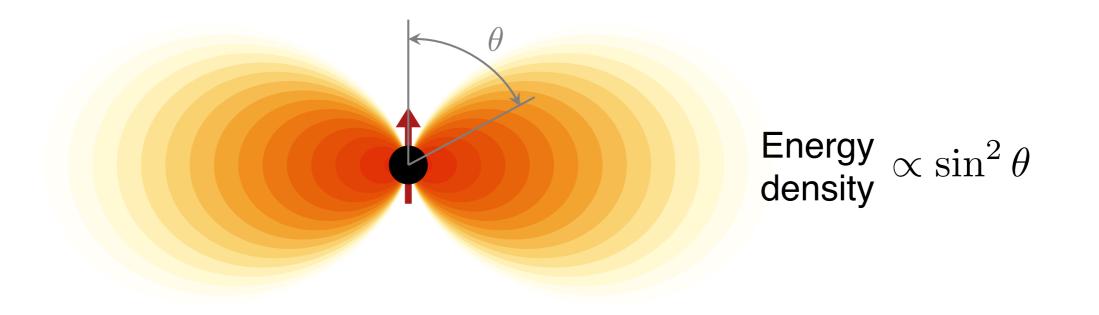
The cloud leaves its imprints on the **phase** of the waveform through finite-size effects.



Furthermore, the resonance effects induce **time-dependent** changes to these finite-size effects.

Spin-Induced Quadrupole

Spinning motion of the cloud induces a quadrupole in the polar direction.

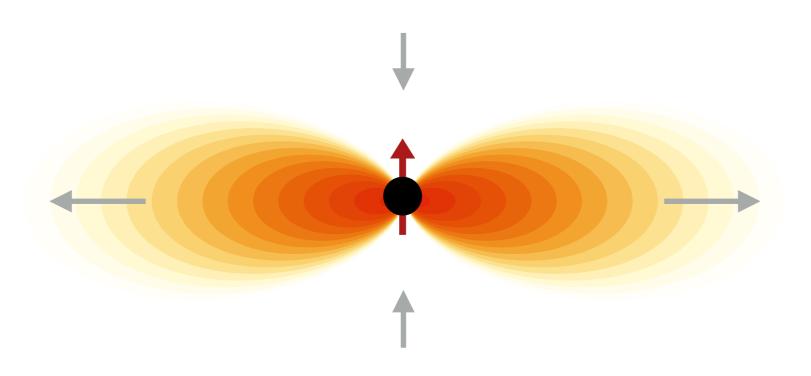


Imprints on the phase of waveforms at **2PN** order.

Laarakkers, Poisson [9709033]

Tidal Deformability

Tidal force exerted by the companion induces a quadrupole.



Imprints on the phase of waveforms at **5PN** order.

Flanagan, Hinderer [0709.1915] Damour, Nagar [0906.0096] Binnington, Poisson [0906.1366]

Signals from the Binary

Mid-frequency band detectors probe the finite-size effects of a wide range of black hole binaries:

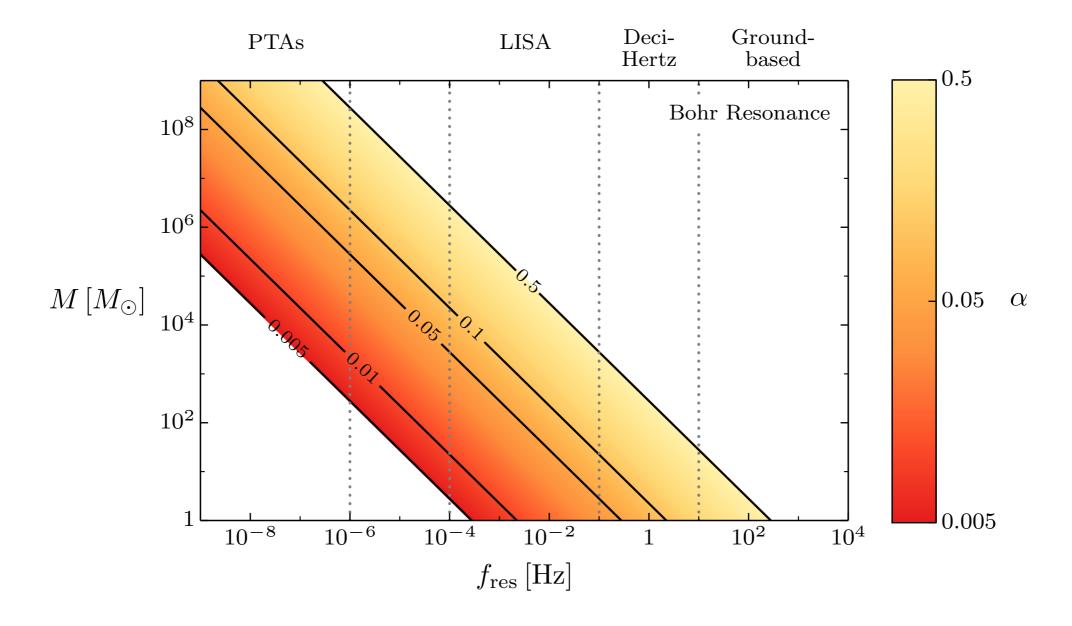
Solar mass	Intermediate mass	Intermediate mass
black hole binaries	black hole binaries	ratio inspiral
e.g. $10 M_{\odot} - 10 M_{\odot}$	$10^3 M_{\odot} - 10^3 M_{\odot}$	$10^5 M_{\odot} - 10 M_{\odot}$

Since a black hole can probe two orders-of-magnitude in boson masses, this range of black hole masses translates into probing

$$\mu \sim 10^{-16} - 10^{-10} \,\mathrm{eV}$$

Resonance Frequency

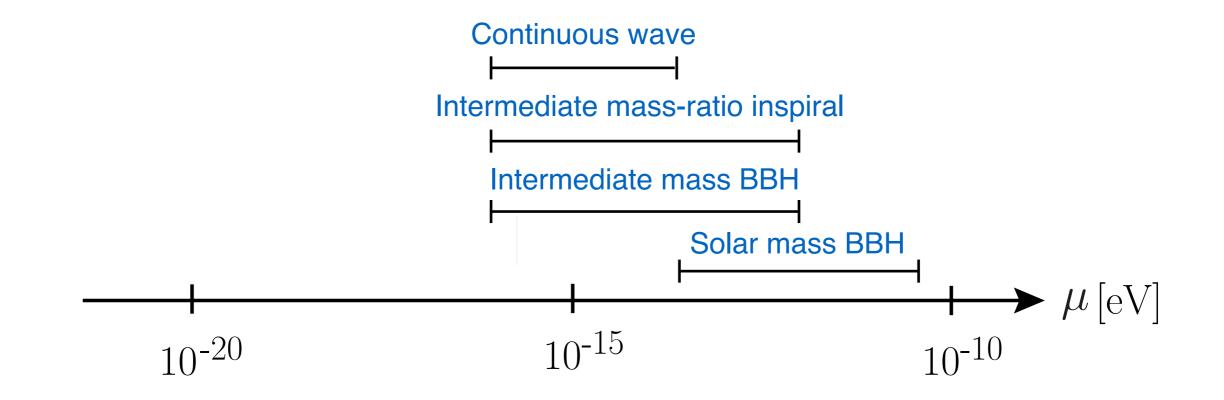
Resonance depletion of finite-size effects occurs at specific GW frequency from the binary.



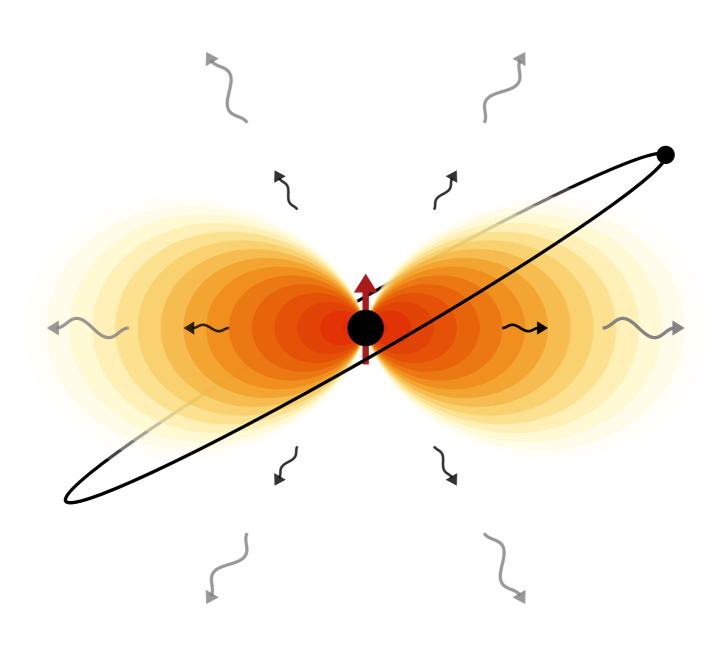
Summary for Mid-frequency Band

Observables for mid-frequency band detectors:

- Continuous, monochromatic GW
- Finite size effects
- Time-dependent changes in finite size effects induced by resonances

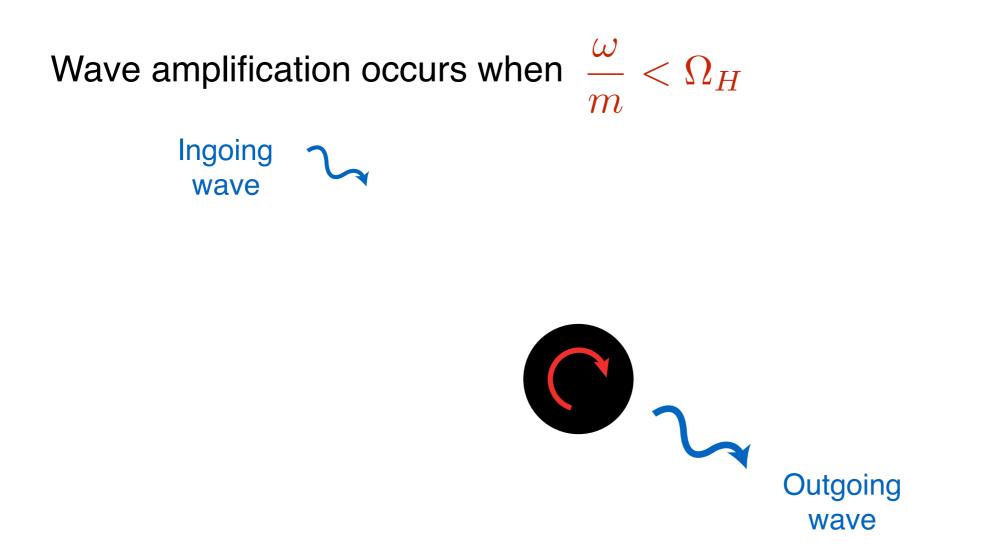


Thank You for Your Attention!



Supplementary Slides

Black Hole Superradiance

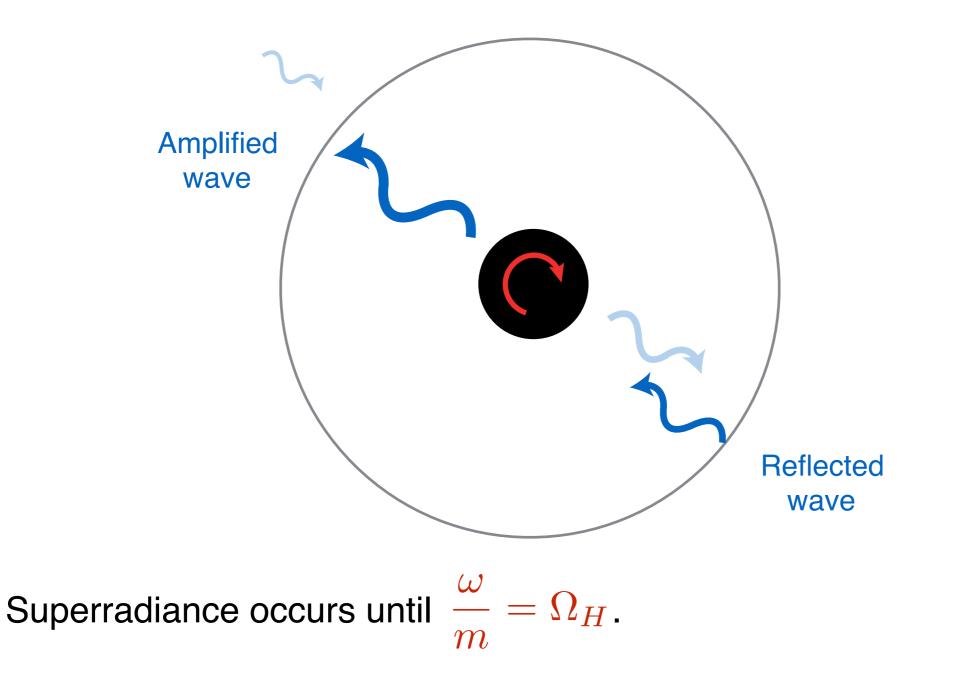


where ω and m are the frequency and azimuthal number of the wave, and Ω_H is the angular velocity of the black hole horizon.

Zeldovich (1972) Starobinsky (1973)

Black Hole Superradiance

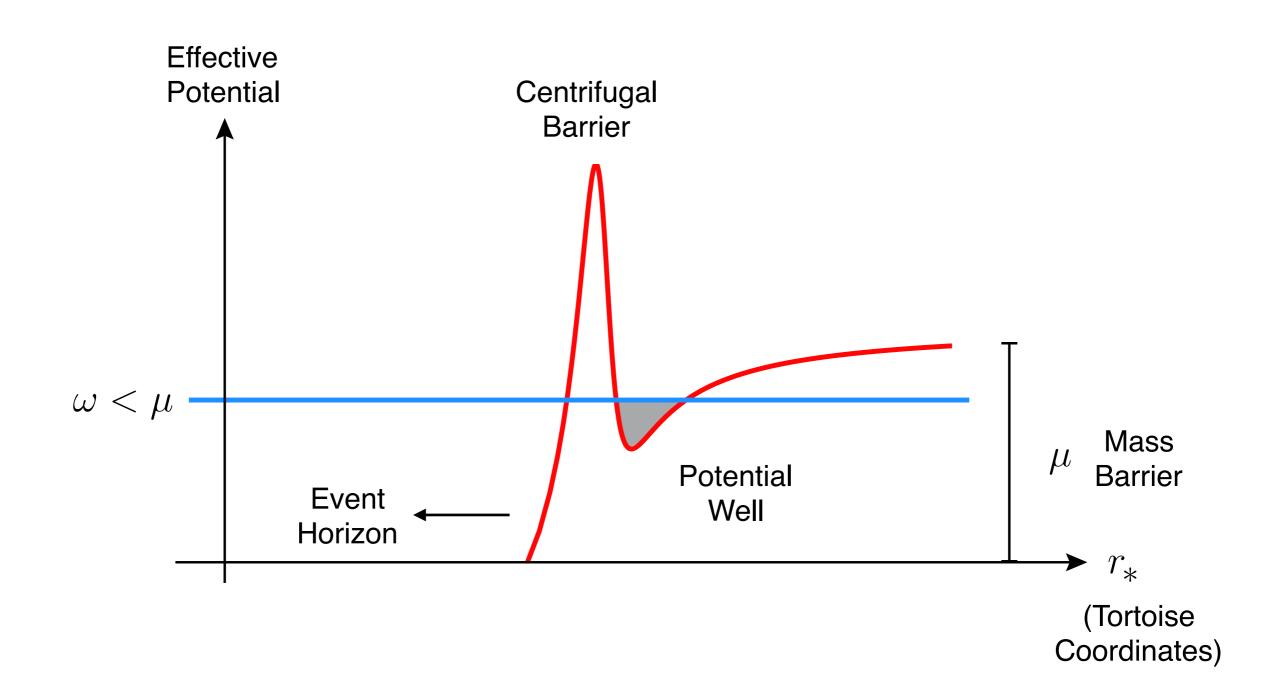
A reflecting mirror surrounding the BH creates a **black hole bomb**:



Press, Teukolsky (1972)

Black Hole Superradiance

Massive fields naturally create this reflecting mirror.



Monochromatic Signal Strain

The root-mean-square strain of the continuous monochromatic GW is

$$h_c \simeq 2 \times 10^{-26} \left(\frac{M}{3M_{\odot}}\right) \left(\frac{M_c(\alpha)/M}{0.1}\right) \left(\frac{\alpha}{0.07}\right)^6 \left(\frac{10 \,\mathrm{kpc}}{d}\right)$$

Clouds with $\alpha \lesssim 0.07$ and $M \lesssim 100 M_{\odot}$ may only be observable if they are in our galaxy, whereas extragalactic sources may be detected for larger values of α and M.

Spin-Induced Quadrupole

Parametrized in terms of **rotational Love number:**

$$Q_{\rm spin} = -\kappa M^3 \chi^2$$

where $\boldsymbol{\chi}$ is the dimensionless spin of the object.

Examples of κ :

$$\kappa_{\rm BH} = 1$$

$$2 \lesssim \kappa_{\rm NS} \lesssim 10$$

$$\kappa_c \gtrsim 10^3 \left(\frac{M_c/M}{0.1}\right) \left(\frac{0.1}{\alpha}\right)^4$$

Tidal Deformability

Parametrized in terms of **tidal Love number:**

$$Q_{ij,\text{induced}} = -\Lambda M^5 \mathcal{E}_{ij}$$

where \mathcal{E}_{ij} is the external tidal tensor sourced by the companion.

Examples of Λ :

$$\Lambda_{\rm BH} = 0$$

$$\Lambda_{\rm NS} \lesssim 10^3$$

$$\Lambda_c \sim 10^7 \left(\frac{M_c/M}{0.1}\right) \left(\frac{0.1}{\alpha}\right)^8$$