

O. Buchmueller AION Project

THE AION PROJECT A UK ATOM INTERFEROMETER OBSERVATORY AND NETWORK

FOR THE EXPLORATION OF ULTRA-LIGHT DARK MATTER AND MID-FREQUENCY GRAVITATIONAL WAVES.

AION WORKSHOP, MARCH 25, 2019

Oliver Buchmueller, Imperial College London

Gravitational Waves

Gravitational waves open a new window to the universe

- sourced by mass, not charge
- universe is transparent to gravity waves

GW provide unique astrophysical informationcompact object binariesblack holes, strong field GR tests

Every new band opened has revealed unexpected discoveries

(Very Strong) Evidence for Dark Matter

1% Stars 7% Gas

7% Diffuse Gas

Can we build an experiment that can tackle both of these important physics questions (and more)?

Outline

What is AION

- Collaboration of AION with the US effort MAGIS
- The Physics Case

WHAT IS AION

What is AION (in a nutshell)?

- The proposal is to construct and operate a next generation Atomic Interferometric Observatory and Network (AION) in the UK that will enable the exploration of properties of dark matter as well as searches for new fundamental interactions.
- It will provide a pathway for detecting gravitational waves from the very early universe in the, as yet mostly unexplored, midfrequency band, ranging from several milliHertz to a few Hertz.
- The proposed project spans several science areas ranging fundamental particle physics over astrophysics to cosmology and, thus, connects these communities.
- Following the "Big Ideas" call, the project was selected by PAAP and STFC as a high priority for the community. It was provisionally classified as a medium scale project.
- AION is also a Work Package of the QSFP proposal

Proposed AION Programme

• Stage 4: space based detector

AION-10: Stage 1 [year 1 to 3]

- 1 & 10 m Interferometers & Site Development for 100m Baseline
- AION-100: Stage 2 [year 3 to 6]
- I00m Construction & Commissioning

AION-KM: Stage 3 [> year 6]

- Operating AION-100 and planning for 1 km & Beyond
- AION-SPACE: Stage 4 [after AION-KM]
- Space based version

**outlined in Big Ideas proposal 9

AION – A Staged Programme**

AION-10: Stage 1 [year 1 to 3]

- 1 & 10 m Interferometers & Site Development for 100m Baseline
- AION-100: Stage 2 [year 3 to 6]
- I00m Construction & Commissioning

AION-KM: Stage 3 [> year 6]

- Operating AION-100 and planning for 1 km & Beyond
- AION-SPACE: Stage 4 [after AION-KM]
- Space based version

**outlined in Big Ideas proposal 10

Freise	GW/ Instrumentation	Saakyan	Neutrinos/Dark Matter/Instrumentation
		-	
Guarrera	Ultracold/Atom Interferometry	Waters	Neutrinos/Dark Matter/Instrumentation
Holynsky	Atom Interferometry/Technology Transfer		Liverpool
Lien	Atom Interferometry	Coleman	Atom Interferometry
Newman	QCD/ DIS / Forward Instrumentation	Bowcock	EDMs/instrumentation/Quantum Foam
Nikolopoulos	Light Dark Matter/Higgs	Burdin	Dark Matter
Singh	Atom clock/Technology Transfer	Rompotis	Muons/Relic neutrinos
Worm	Dark Matter		Nottingham
	Bristol	Burrage%	GW Theory
Brooke	Energy frontier/BSM/Instrumentation	Sotiriou%	GW Theory
Flaecher	Energy frontier/BSM/Dark Matter		Oxford
Goldstein	Energy frontier/Instrumentation	Kraus	Dark Matter
Velthuis	Instrumentation/Technology Transfer	March-Russel%	BSM Theory
	Brunel	Randall%	BSM Theory
Hobson	Energy Frontier/Instrumentation	Shipsey	Higgs/muons/darkenergy/ instrumentation
Smith	Spaceborne Instrumentation/Technology Transfer	Rutherf	ord Appleton Laboratory
	Glasgow	Valenzuela	Head of Quantum Sensors Group, RAL Space
Bell	GW/ Instrumentation	Vick	Head of the Disruptive Space Technology Centre, RAL Space
Hammond	GW/ Instrumentation	Waltham	Chief Technologist, RAL Space
Imperial College		Shepherd- Themistocleous	Contact for Particle Physics at RAL
Araujo	Dark Matter/Instrumentation		Sheffield
Buchmueller	Energy frontier/BSM/Dark Matter/GW	Dolan%	GW Theory
Hassard	Instrumentation/Technology Transfer	Strathclyde	
Hinds	EDM/Atom Interferometry/ultracold	Arnold	Ultra-cold atoms, BEC, matterwave interferometry, atomic clocks
Sauer	EDM/Atom Interferometry/ultracold	Griffin	Ultra-cold atoms, BEC, matterwave interferometry, atomic clocks, magnetometry
Sumner	GW/ Instrumentation	Riis	Ultra-cold atoms, BEC, matterwave interferometry, atomic clocks,
Tarbutt	EDM/Atom Interferometry/ultracold		magnetometry Sussex
	-	Calmet%	GW Theory
	gs College London		,
Acharya% Blas%	DM & GW Theory DM & GW Theory	Dunningham% Hindmarsh%	Theory of atom interferometry GW Theory
Ellis%	DM & GW Theory DM & GW Theory	Hindmarsn% Huber%	GW Theory GW Theory
Fairbairn%	DM & GW Theory	Krueger	Quantum Systems and BEC, Al
Lim%	GW Theory	Ridegei	
Mavromatos%	GW Theory GW Theory	Tasinato%	Swansea GW Theory
	-	Tasinato%	Gav Theory
Sakellariado%	GW Theory	National Physical Laboratory*	
Witek%	GW Theory	Gill*	Cold atom & ion clocks/ ultrastable
	-		cavities & lasers/ precision timing/
Millen	Quantum Optomechanics	Margolis*	atom interferometry Cold atom & ion clocks/ frequency
		Barwood*	combs/ precision timing Ultrastable cavities & lasers / ion
		24111004	clocks

Name	Expertise	Name	Expertise	
Birmingham		L L	University College London	
Allport	Instrumentation	Barker	Instrumentation/Gravitational Waves	
Barontini	Ultracold/Atom Interferometry	Flack	Quantum Gravity/QM tests	
Bongs	Atom Interferometry/Atom clock/Technology Transfer	Ghag	Dark Matter/Gravitational Waves	
Boyer	Quantum optics/Atom Interferometry	Nichol	Neutrinos /Instrumentation	

Status "Big Ideas Call" Will be updated in March 2019

In preparation of this proposal we have broadly with consulted the relevant UK science communities and have received very positive feedback. The support is across several fields, ranging from fundamental particle physics, over atom interferometry to gravitational wave also physics. The support both covers experimental as well as theory communities in the UK. So far, more than 70 members from 20 UK institutions have provided explicit support for this proposal:

Aberdeen, Birmingham, Bristol, Brunel, Durham, Glasgow, Imperial College, Kings College London, University College London, Liverpool, Nottingham, Open University, Oxford, RAL, Sheffield, Strathclyde, Sussex, Swansea and NPL

Hill*	Optical lattice clocks
Szymaniec*	Atomic fountain clocks
Ovchinnikov*	Atom interferometry / BEC
Godun*	lon clocks/ atom interferometry

Freise	GW/ Instrumentation	Saakyan	Neutrinos/Dark Matter/Instrumentation
Guarrera	Ultracold/Atom Interferometry	Waters	Neutrinos/Dark Matter/Instrumentation
Holynsky	Atom Interferometry/Technology Transfer		Liverpool
Lien	Atom Interferometry	Coleman	Atom Interferometry
Newman	QCD/ DIS / Forward Instrumentation	Bowcock	EDMs/instrumentation/Quantum Foam
Nikolopoulos	Light Dark Matter/Higgs	Burdin	Dark Matter
Singh	Atom clock/Technology Transfer	Rompotis	Muons/Relic neutrinos
Worm	Dark Matter		Nottingham
	Bristol	Burrage%	GW Theory
Brooke	Fnerav	Sotiriou%	GW Theory

Flae

Golo Velt

Hob Smi

Bell Han

Araı Buc

Name	Expertise	Name	Expertise	
Birmingham		U	University College London	
Allport	Instrumentation	Barker	Instrumentation/Gravitational Waves	
Barontini	Ultracold/Atom Interferometry	Flack	Quantum Gravity/QM tests	
Bongs	Atom Interferometry/Atom clock/Technology Transfer	Ghag	Dark Matter/Gravitational Waves	
Boyer	Quantum optics/Atom Interferometry	Nichol	Neutrinos /Instrumentation	

If you are interested to follow the AION activity you can subscribe to the AION Email list: aion-project@imperial.ac.uk

via:

https://mailman.ic.ac.uk/mailman/listinfo/aion-project

Sun			
			interferometry, atomic clocks, magnetometry
Tarbutt	EDM/Atom Interferometry/ultracold		Sussex
Kin	gs College London	Calmet%	GW Theory
Acharya%	DM & GW Theory	Dunningham%	Theory of atom interferometry
Blas%	DM & GW Theory	Hindmarsh%	GW Theory
Ellis%	DM & GW Theory	Huber%	GW Theory
Fairbairn%	DM & GW Theory	Krueger	Quantum Systems and BEC, AI
Lim%	GW Theory	Swansea	
Mavromatos%	GW Theory	Tasinato%	GW Theory
Sakellariado%	GW Theory	National Physical Laboratory*	
Witek%	GW Theory	Gill*	Cold atom & ion clocks/ ultrastable cavities & lasers/ precision timing/ atom interferometry
Millen	Quantum Optomechanics	Margolis*	Cold atom & ion clocks/ frequency combs/ precision timing
	•	Barwood*	Ultrastable cavities & lasers / ion clocks

Glasgow, Imperial College, Kings College London, University College London, Liverpool, Nottingham, Open University, Oxford, RAL, Sheffield, Strathclyde, Sussex, Swansea and NPL

Hill*	Optical lattice clocks
Szymaniec*	Atomic fountain clocks
Ovchinnikov*	Atom interferometry / BEC
Godun*	lon clocks/ atom interferometry

COLLABORATION WITH US (VIA MAGIS)

International Collaboration

- From the outset this project would greatly benefit from close collaboration on an international level with the US initiative, MAGIS-100, which pursues a similar goal of an eventual km-scale atom interferometer on a comparable timescale.
- The option of operating two AI detectors, one in the UK and one in the US, in tandem enables new exciting physics opportunities not accessible to either AI detector alone.
- A collaboration with AION by the MAGIS experiment has already been endorsed by the community at Fermilab, presenting the UK with an immediate window of scientific opportunity.
- This US-UK collaboration will serve as the testbed for full-scale terrestrial (kilometre-scale) and satellite-based (thousands of kilometres scale) detectors and build the framework for global scientific leadership in this area.

MAGIS-100: GW detector prototype at Fermilab

sensitivity

LISA

0.010

Matter wave Atomic Gradiometer Interferometric Sensor

- 100-meter baseline atom interferometry at Fermilab (MINOS access shaft)
- Intermediate step to full-scale (km) detector for gravitational waves

Mid-band science

- LIGO sources before they reach LIGO band
- Optimal for sky localization: predict when and where inspiral events will occur (for multi-messenger astronomy) Strain [1/VHz]
- BH, NS, WD binaries
- Probe for studying cosmology
- Search for dark matter (dilaton, ALP, ...)
- Extreme quantum superposition states: >meter wavepacket separation, up to 9 seconds duration

Timeline

- 2019 2023: MAGIS-100 at Fermilab (100-meter prototype detector) MO(
- 2023 2028: Kilometer-scale GW detector (e.g., SURF Homestake site) [Proposed]

10

10-21

0.001

ATOM SOURCE

MAGIS-100: GW detector prototype at Fermilab

• 100-meter baseline atom interferometry at Fermilab (MINOS access shaft)

- 2019-2023: MAGIS-100 at Fermilab (100m)
- Mid-t 2023-2028: km-scale detector [site still be chosen]
- LIG
 - ^{Opt} Funding:
 - The project was partly founded in January 2019 by the MOORE
- BH, foundation with \$10Mio (£7.7Mio) over 5 years.
 - Pro

 The project is now applying for additional DOE funding
- SeaExt
 - >meter wavepacket separation, up to 9 seconds duration

More about MAGIS-100 in the talk of Jason Hogan

0.010

0.100

Frequency [Hz]

0.001

ATOM

ATOM

SOURCE

ATOM SOURCE

met

SOURCE

VISIT TO STANFORD ON 10/11 JANUARY 2019

Stanford Visit 10/11 January 2019

We had a very fruitful visit to Stanford! Main goals of the visit:

- Establish information exchange and review the Stanford work.
- Strengthen the US-UK collaboration ٠
- Identify synergies and common goals between AION and MAGIS.

Outcome:

- Stanford/MAGIS is very open to closer collaboration with the UK/AION and they very much welcome another activity working towards the mid-band with Als.
- There are several challenges where the UK expertise can help to achieve the design goals of the programme [see next slide].
- We agreed to include the synchronised operation of 10m prototype versions (later 100m) in the programme of MAGIS and AION.

Stanford MAGIS prototype

Trapped Sr atom cloud (Blue MOT)

Atom optics laser (M Squared SolsTiS)

Courtesy of Jason Hogan!

Stanford MAGIS prototype

Stanford Lab to host 8 m prototype of the Sr fountain.

It is supposed to be assembled over summer 2019.

Stanford MAGIS prototype

Stanford Lab to host 8 m prototype of the Sr fountain in the talk of Jason Hogan

More about MAGIS-100 in the talk of Jason Hogan

It is supposed to be assembled over summer 2019.

Imperial College London

What are the challenges?

Still several orders of Magnitude away in sensitivity required to be sensitive to Midband GW physics!

Need to push the basic parameters to accomplish this goal! Although there is a clear path forward this won't be a free lunch and it will require effort and ingenuity!

	AION/MAGIS-100 current	AION/MAGIS-100 5/6 year	AION/MAGIS-km
Baseline	100 m	100 m	$2 \mathrm{km}$
Phase noise	$10^{-3}/\sqrt{\text{Hz}}$	$10^{-5}/\sqrt{\text{Hz}}$	$0.3 imes 10^{-5} / \sqrt{\mathrm{Hz}}$
LMT	100	4e4	4e4
Atom sources	3	3	30

The UK community could play an important role to accomplish this goal, which, in turn, can accelerate the schedule and minimize the risk of failure

AION PROJECT WORK PACKAGES

AION10 [Stage 1]: Work Packages in a Nutshell

WP-AI

- Form UK collaboration to design and construct AION1 and AION10 and establish a first UK AION Network by building AION-1 in selected places.
- Prototype AION-10 to demonstrate the technology and to establish UK expertise and leadership in the field.
- Commission AION-10, compare with AION-1 Network and perform synchronised measurement campaigns with MAGIS.
- Connect to UK QTH to develop techniques and technology required to reach performance for realising science goals, in collaboration with developments in the MAGIS consortium.

WP-Physics

- Establish physics programme for AION-1/10 Network.
- Physics exploitation of AION-1/10 Network
- Contribute to work establishing the physics case for AION-100 and beyond.
- Support phenomenology for AION physics case.

WP-AION100

• Work towards AION-100 including design work for AION-100 in a tower or a shaft and establish the physics case.

WP-MAGIS

- Collaborate with MAGIS-100 to contribute to experiment & exploitation
- Build the foundation of a strong and lasting collaboration with US.

AION10 [Stage 1]: Work Packages in a Nutshell

WP-AI

AION10 [Stage 1]: Main WP Connections

AION10 [Stage 1]: Main WP Connections

THE PHYSICS CASE

AI CN

AION: Pathway to the GW Mid-(Frequency) Band

AION: Pathway to the GW Mid-(Frequency) Band

Mid-band science

- Detect sources BEFORE they reach the high frequency band [LIGO, ET]
- Optimal for sky localization: predict when and where events will occur (for multi-messenger astronomy)
- Search for Ultra-light dark matter in a similar frequency [i.e. mass] range

Gravitational Wave Detection with Atom Interferometry

Imperial College London

o.

Sky position determination

Sky localization precision:

Mid-band advantages

- Small wavelength λ
- Long source lifetime (~months) maximizes effective R

Benchmark	$\sqrt{\Omega_s} [\text{deg}]$
GW150914	0.16
GW151226	0.20
NS-NS (140 Mpc)	0.19

Ultimate sensitivity for terrestrial based detectors is achieved by operating 2 (or more) Detectors in synchronisation mode 32

Ultimate Goal: Establish International Network

First-Order Electroweak Phase Transition and its Gravitational Wave Signal

The Landscape of Ultra-Light Dark Matter Detection

Vey light dark matter and gravitational wave detection similar when detecting coherent effects of entire field, not single particles. Example: Ultra-Light Dark Matter:

Diagram taken from P. Graham's talk at HEP Front 2018

The Landscape of Ultra-Light Dark Matter Detection

Vey light dark matter and gravitational wave detection similar when detecting coherent effects of entire field, not single particles. Example: Ultra-Light Dark Matter:

 $\leftarrow \text{atom interferometry} \longrightarrow \\ \text{MAGIS/AION}$

Diagram taken from P. Graham's talk at HEP Front 2018

The Landscape of Ultra-Light Dark Matter Detection

Vey light dark matter and gravitational wave detection similar when detecting coherent effects of entire field, not single particles. Example: Ultra-Light Dark Matter:

Ultra-Light Spin-0 Dark Matter

Ultra-light spin 0 particles are expected to form a coherently oscillating classical field $\vec{\phi}(t) = \phi_0 cos(E_\phi t/\hbar)$

as $E_{\phi} \approx m_{\phi}c^2$ with an energy density of

 $<\rho_{\phi}>\approx m_{\phi}^2\phi_0^2/2~(\rho_{DM,local}\approx 0.4~{\rm GeV/cm^3})$.

Ultralight scalar dark matter

Ultralight dilaton DM acts as a background field (e.g., mass ~10⁻¹⁵ eV)

DM coupling causes time-varying atomic energy levels:

Sensitivity for DM with Scalar Couplings to Matter

DM with scalar couplings to matter, which cause time variation of fundamental constants such as the electron mass

Arvanitaki et al., PRD **97**, 075020 (2018).

43

Sensitivity for DM with Scalar Couplings to Matter

Summary

- The AION programme is driven by a well-defined and ambitious physics case to explore the Mid-Frequency Band of the GW spectrum.
 - In addition, it will enable the exploration of properties of dark matter as well as searches for new fundamental interactions
- AION foreseen as a staged programme: AION-10, AION-100, AION-KM and AION-SPACE.
 - AION-10 [year 1 to 3] and AION-100 [year 3 to 6] are part of the QSFP WP3
 - AION-KM and AION-SPACE are the pathway to the future and achieving ultimate sensitivity
- The AION project will closely collaborate with the US initiative, MAGIS-100, which pursues a similar goal of an eventual km-scale atom interferometer on a comparable timescale.
 - The option of operating two detectors, one in the UK and one in the US, in tandem enables new exciting physics opportunities not accessible to either detector alone.
 - To accomplish the ultimate sensitivity required to study the Mid-Frequency Band of the GW spectrum, the basic parameters of the Atom Interferometer have to be significantly improved. This requires significant effort and ingenuity, and the UK community can play an important role in it!

AI CN