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What is AION (in a nutshell)?

The proposal is to construct and operate a next generation
Atomic Interferometric Observatory and Network (AION) in the
UK that will enable the exploration of properties of dark matter as
well as searches for new fundamental interactions.

It will provide a pathway for detecting gravitational waves from
the very early universe in the, as yet mostly unexplored, mid-
frequency band, ranging from several milliHertz to a few Hertz.

The proposed project spans several science areas ranging
fundamental particle physics over astrophysics to cosmology
and, thus, connects these communities.

Following the “Big Ideas” call, the project was selected by PAAP
and STFC as a high priority for the community. It was
provisionally classified as a medium scale project.

AION is also a Work Package of the QSFP proposal
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The AION Project is foreseen as
a 4-stage programme:

Proposed AION Programme

The first stage develops existing technology (Laser
systems, vacuum, magnetic shielding etc.) and the
infrastructure for the 100m detector and produces
detailed plan resulting in an accurate assessment of
the expected performance in Stage 2.

The second stage builds, commissions and exploits
the 100m detector and also prepares design studies

for the km-scale.

The third and fourth stage prepare the groundwork
for the continuing programme:

» Stage 3: Terrestrial km-scale detector
» Stage 4. space based detector
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AION - A Staged Programme**

AION-10: Stage 1 [year 1 to 3]

* 1 & 10 m Interferometers & Site Development
for 100m Baseline

AION-100: Stage 2 [year 3 to 6]
= 100m Construction & Commissioning

AION-KM: Stage 3 [ > year 6 ]

= Operating AION-100 and planning for 1 km &
Beyond

AION-SPACE: Stage 4 [ after AION-KM ]
0 Space based version **outlined in Big Ideas proposal ¢
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AION - A Staged Programme**
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COLLABORATION WITH US (VIA
MAGIS)

13
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International Collaboration

From the outset this project would greatly benefit from close
collaboration on an international level with the US initiative, MAGIS-
100, which pursues a similar goal of an eventual km-scale atom
Interferometer on a comparable timescale.

The option of operating two Al detectors, one in the UK and one in
the US, in tandem enables new exciting physics opportunities not
accessible to either Al detector alone.

A collaboration with AION by the MAGIS experiment has already
been endorsed by the community at Fermilab, presenting the UK
with an immediate window of scientific opportunity.

This US-UK collaboration will serve as the testbed for full-scale
terrestrial (kilometre-scale) and satellite-based (thousands of
kilometres scale) detectors and build the framework for global
scientific leadership in this area.

14
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Matter wave Atomic Gradiometer T
Interferometric Sensor

¢ 100-meter baseline atom interferometry at
Fermilab (MINOS access shaft)

¢ Intermediate step to full-scale (km) detector
for gravitational waves !

Mid-band science ,
e LIGO sources before they reach LIGO band Projected strain

« Optimal for sky localization: predict when | sensitivity
and where inspiral events will occur (for
multi-messenger astronomy)

e BH, NS, WD binaries
¢ Probe for studying cosmology .
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« 2019 - 2023: MAGIS-100 at Fermilab (100-meter prototype detector) \[OOR
e 2023 — 2028: Kilometer-scale GW detector (e.g., SURF Homestake site) [Proposed]

2= Fermilab ¥ LViRPOO o ol [y

SFANBGORD UNIVERSITY

Courtesy of Jason Hogan!

Al
N




Imperial College Al
London N

MAGIS-100: GW detector prototype at Fermilab

Matter wave Atomic Gradiometer
Interferometric Sensor

 100-meter baseline atom interferometry at - . ==
Fermilab (MINOS access shaft) : A
\__J/

for o Timeline:
« 2019-2023: MAGIS-100 at Fermilab (100m)

Mi‘i;: « 2023-2028: km-scale detector [site still be chosen]

a,f! Funding:
mu « The project was partly founded in January 2019 by the MOORE soumct
BH, foundation with $10Mio (£7.7Mio) over 5 years.

gf « The project is now applying for additional DOE funding

Ext
>meter wavepacket separation, up to 9 [ S
seconds duration o T o ' n .
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More about MAGIS 100 In the talk of Jason Hogan
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Courtesy of Jason Hogan!
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VISIT TO STANFORD ON 10/11
JANUARY 2019
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Stanford Visit 10/11 January 2019
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We had a very fruitful visit to Stanford!
Main goals of the visit:

Establish information exchange and
review the Stanford work.

Strengthen the US-UK collaboration
|dentify synergies and common goals
between AION and MAGIS.

Outcome:

Stanford/MAGIS is very open to closer
collaboration with the UK/AION and
they very much welcome another
activity working towards the mid-band
with Als.

There are several challenges where the
UK expertise can help to achieve the
design goals of the programme [see
next slide].

We agreed to include the synchronised
operation of 10m prototype versions
(later 100m) in the programme of
MAGIS and AION. 18
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Sr gradiometer CAD
(atom source detail)

Trapped Sr atom cloud
(Blue MOT)

Atom optics laser
(M Squared SolsTiS)

Courtesy of Jason Hogan!
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Stanford MAGIS prototype

\ 7
__ Two assembled Sr atom

Ol S T

sources

| Stanford Lab to host 8 m
¥ prototype of the Sr fountain.

It is supposed to be assembled
over summer 2019.

| P
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Stanford MAGIS prototype

ST

N
- Two assembled Sr atom sources

Stanford Lab to host 8 m

Nnrntnhv/ynao nf tho Cr fniiNntain

More about MAGIS 100 In the talk of Jason Hogan

It iIs supposed to be assembled
over summer 2019.
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Strain [1/vHz]

T T T A bk b T w—"‘""
TOBA 2017 |
1072
~al LIGO H1 Cal CS Deltal_External |
107"°F AION/MARIS-100 with current (2019) technology -

-8l :
10 AION/MAGIS-100 (5 to 6 year)
LISA ‘
=214 .
10 ™~ —— Advanced LIGO
AION/MAGIS-space T ]
GN
0.001 0.010 0.100 1 10 101
Frequency [Hz]
AION/MAGIS-100 | AION/MAGIS-100 AION/MAGIS-km
current 5/6 year
Baseline 100 m 100 m 2 km
Phase noise 1073 /v/Hz 107°/v/Hz | 0.3 x 107°/v/Hz
LMT 100 ded 4e4
Atom sources 3 3 30

Still several orders of
Magnitude away in sensitivity
required to be sensitive to Mid-
band GW physics!

Need to push the basic
parameters to accomplish this
goal! Although there is a clear

path forward this won'’t be a free
lunch and it will require effort and
ingenuity!

The UK community could play an
important role to accomplish this
goal, which, in turn, can
accelerate the schedule and
minimize the risk of failure

22
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AION PROJECT WORK PACKAGES
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AION10 [Stage 1]: Work Packages in a Nutshell

WP-AI
 Form UK collaboration to design and construct AION1 and AION10 and establish a first UK
AION Network by building AION-1 in selected places.

* Prototype AION-10 to demonstrate the technology and to establish UK expertise and
leadership in the field.

« Commission AION-10, compare with AION-1 Network and perform synchronised
measurement campaigns with MAGIS.

« Connect to UK QTH to develop techniques and technology required to reach performance
for realising science goals, in collaboration with developments in the MAGIS consortium.

WP-Physics
« Establish physics programme for AION-1/10 Network.
* Physics exploitation of AION-1/10 Network

« Contribute to work establishing the physics case for AION-100 and beyond.
«  Support phenomenology for AION physics case.

WP-AION100

« Work towards AION-100 including design work for AION-100 in a tower or a shaft and
establish the physics case.

WP-MAGIS

« Collaborate with MAGIS-100 to contribute to experiment & exploitation
« Build the foundation of a strong and lasting collaboration with US. 24

O. Buchmueller AION Project
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AION10 [Stage 1]: Work Packages in a Nutshell

WP-AI

Pathway to technology and expertise and will form
a first network of Al’s in the UK.

WP-Physics

This will give us physics & phenomenology

— e T Tt T [T rrmrr—rrr—rs—i— gy e — st s— s s sr srs e si— i —s —siier s s = s = Ty —r—— ——s— — -

WP-AION100
This will give us the path into the future (next bid)

WP-MAGIS
This will give us MAGIS and US Collaboration

- - 'S
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AION10 [Stage 1]: Main WP Connections

WP-

, Physics
o

More information and discussion about WPs

In the dedicated WP session this afternoon!
S /AT ey o | B

N, i

AION100

O. Buchmueller AION Project

MAGIS

27
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THE PHYSICS CASE

28
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Characteristic Strain

10

10

10

Experimental GW Landscape

EPTA
Stochastic IPTA
backgroun
-14
-16
Massive binaries
R Resolvable galactic
" binaries uco
Extreme mas! Type 1A
20 ratio inspiral supernovae
aLIGco
-22 Compact binary
inspirals
Core collapse
26 supernovae
-26
10 -1 10 * 10 * 10 # 10 ? 10° 102 10 ¢ 10 ¢

Frequency / Hz
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AION: Pathway to the GW Mid-(Frequency) Band

London
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Experimental GW Landscape

EPTA
S?och.r.ti( IPTA
backgroun
Mid-band
decihertz to hertz
Massive binaries
LISA e LIGo
Extreme mas /
ratio inspirals f sug :
\ aLIGO
\‘con collapse
' supernovae
10 -1° 10 * 10 * 10 # 10 2 10° 10 2 10 ¢ 10 ¢

Frequency / Hz

Mid-band science

Detect sources BEFORE they reach the high frequency band [LIGO, ET]

Mid-Band currently
NOT covered

Optimal for sky localization: predict when and where events will occur (for multi-messenger
astronomy)

Search for Ultra-light dark matter in a similar frequency [i.e. mass] range

30
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Gravitational Wave Detection with Atom Interferometry

high-frequency
region
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MAGIS/AION-Space

Advanced LIGO

mid-frequency emD

low-frequency _
region
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Sky position determination

Sky localization
precision:

—1
Vs~ (SNR- %)

Images: R. Hurt/Caltech-JPL; 2007 Thomson-Higher Education

Mid-band advantages
- Small wavelength A

- Long source lifetime
(~months) maximizes
effective R

)
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o
[a W
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3
e
e
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o
o

Benchmark

GW150914
GW151226
NS-NS (140 Mpc)

Courtesy of Jason Hogan!

Ultimate sensitivity for terrestrial based detectors is achieved by operating 2 (or more)
Detectors in synchronisation mode 32
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Ultimate Goal: Establish International Network
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[llustrative Example:
Network could be further extended
or arranged differently
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GW Detection & Fundamental Physics - Example

First-Order Electroweak Phase Transition and its Gravitational Wave Signal
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c 10712
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10—16
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Plots provided by Marek Lewicki
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1072 10° 1
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Translate strain into dimensionless energy
density Qg,,h? in GWs against frequency

arXiv:1809.08242
John Ellis, Marek Lewicki,
José Miguel No

What is is the GW signal
of electroweak phase
transition in various
theories beyond
the Standard Model.

MAGIS/AION-4K

L
0.010

L L L L L
0.100 1 10 100 1000
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GW Detection & Fundamental Physics - Example
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Plots provided by Marek Lewicki
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GW Detection & Fundamental Physics - Example
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The Landscape of Ultra-Light Dark Matter Detection

Vey light dark matter and gravitational wave detection similar when detecting

O. Buchmueller AION Project

coherent effects of entire field, not single particles.
Example: Ultra-Light Dark Matter:

1022 eV 10718 eV 1071 eV 10710 v 107% eV 1072 eV

DM mass:  |r—t—————

1073 Hz 1074 Hz 1 Hz 10* Hz 10% Hz 10'? Hz

Diagram taken from P. Graham’s
talk at HEP Front 2018 38
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The Landscape of Ultra-Light Dark Matter Detection

Vey light dark matter and gravitational wave detection similar when detecting
coherent effects of entire field, not single particles.
Example: Ultra-Light Dark Matter:

1022 eV 10718 eV 1071 eV 10710 v 107% eV 1072 eV
1073 Hz 1074 Hz 1 Hz 10* Hz 10% Hz 10'? Hz

<— atom interferometry —>

MAGIS/AION

Diagram taken from P. Graham’s
talk at HEP Front 2018 39
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The Landscape of Ultra-Light Dark Matter Detection

Vey light dark matter and gravitational wave detection similar when detecting
coherent effects of entire field, not single particles.
Example: Ultra-Light Dark Matter:

1022 eV 10718 eV 1071 eV 10710 v 107% eV 1072 eV

10~® Hz 10~% Hz 1 Hz 10* Hz 10% Hz 10" Hz
<«—torsion balances —>
< E&M —m
Eot-Wash .
DM Radio

<—atom interferometry—> <€«———NMR——>

MAGIS/AION CASPEr

<« atomic magnetometers —>
Romalis and Trahms groups

Diagram taken from P. Graham’s
talk at HEP Front 2018 40
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Ultra-Light Spin-0 Dark Matter

Ultra-light spin O particles are expected to form a coherently oscillating classical field

as

O. Buchmueller AION Project

—

o(t) = pocos(Eyt/h)

Fy =~ f.r:n,‘;bc2 with an energy density of

< pp >R mfbfbg/Q (PDM jocal = 0.4 GeV /cm?)|

dark matter halo

Pom = 0.4 GeV/cm?
Vou ~ 300 km/s

bulge
\Sun Hisk

Milky Way
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Ultralight scalar dark matter

Ultralight dilaton DM acts as a background field (e.g., mass ~10-1° eV)

g 1 1 d
& L=+ §8ugb8“gb - §m35q52 — \VATrGN @ |dm, meEe — ZeF/wFW + ...
; DM scalar i
E l field QLD
£
° ¢ (t,x) = ¢ocos|[me(t —v-x)+ B8]+ O (|V|2) Do X +/PDM dDé\:I]ST:/‘SS
DM coupling causes time-varying atomic energy levels:
DM
e) e) t induced
“ [:;> I oscillation

1L U‘J(
‘g> Dark matter \g) e T
coupling _
Time ———

Courtesy of Jason Hogan! 42
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Sensitivity for DM with Scalar Couplings to Matter
log,,[fs/Hz] log,,[fs/Hz]
-4 ) 0 2 4 -4 -2 0 2 4
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=2
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T 5
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920 -18 -16 -14 -12 -10
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_ DM with scalar couplings to matter,
= S ATRIGK which cause time
=1] . .
< variation of fundamental constants
~10} T such as the electron mass
/
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Sensitivity for DM with Scalar Couplings to Matter

log ol fy/Hz] Al-100m log ol fo/Hz]
-4 -2 0 p) 4
g 5
=2
CH) L
< D
% 5% B! AURIGA
2 g
G natural d, X natural b |
S f ]S
o - :
B - Higgs Portal b coupling
-15 : - l i i ! ; ! L i i
920 —-18 -16 -14 -12 -10
log,,[mg/eV]
_ DM with scalar couplings to matter,
= S ATRIGK which cause time
=1)] . .
= variation of fundamental constants
- 10f catata 4 ] such as the electron mass
T ifCDf”“"“ X Arvanitaki et al., PRD 97, 075020
log,,[my/eV] (2018)
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Summary

« The AION programme is driven by a well-defined and ambitious

physics case to explore the Mid-Frequency Band of the GW

spectrum.

« In addition, it will enable the exploration of properties of dark matter as well as
searches for new fundamental interactions

« AION foreseen as a staged programme: AION-10, AION-100, AION-

KM and AION-SPACE.

= AION-10 [year 1 to 3] and AION-100 [year 3 to 6] are part of the QSFP WP3
=  AION-KM and AION-SPACE are the pathway to the future and achieving
ultimate sensitivity

« The AION project will closely collaborate with the US initiative,

MAGIS-100, which pursues a similar goal of an eventual km-scale

atom interferometer on a comparable timescale.

» The option of operating two detectors, one in the UK and one in the US, in
tandem enables new exciting physics opportunities not accessible to either
detector alone.

« To accomplish the ultimate sensitivity required to study the Mid-Frequency Band
of the GW spectrum, the basic parameters of the Atom Interferometer have to be
significantly improved. This requires significant effort and ingenuity, and the UK
community can play an important role in it!
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