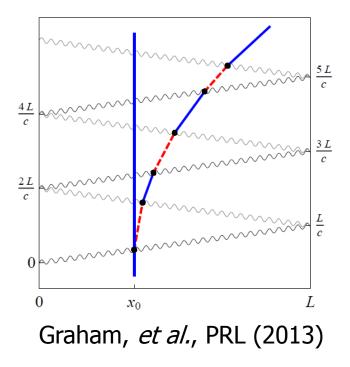
WP AION-Upgrades

• How do we reach the sensitivity required to enable the science goals?


Tasks to define work areas:

- Task 1: Large momentum transfer
- Task 2a: Atom preparation
- Task 2b: Spin Squeezing

Aim to demonstrate significant advancements prior to AI-100/1000

WP AION-Upgrade Task 1: LMT

- To address propagation delay \rightarrow single photon LMT on clock transition
- Meeting MAGIS/AION goals \rightarrow need 10-100x LMT increase over SOTA

WP AION-Upgrade Task 1: LMT

- To address propagation delay \rightarrow single photon LMT on clock transition
- Meeting MAGIS/AION goals \rightarrow need 10-100x LMT increase over SOTA

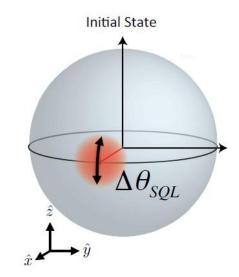
Work in Task 1

Enable LMT and minimise errors:

- Single photon gradiometry on narrow line to suppress spont. emission
- Beam quality (wavefront, shaping, filtering)
- Robust and high fidelity schemes, composite
- Launching and collimation/cooling schemes

Demonstrate in laboratory and translate to AI-10

Estimated budget for Task 1


- 36 months of RF time, £100k/year: £300k
- Capital: £550k

Worked capital example:	
Laser systems for cooling and interferometry	£260,000
Experimental control and electronics	£70,000
Optical equipment	£50,000
Vacuum system and camera	£110,000
Test and measurement	£60,000
Total	£550,000

Will require in-kind capital and staff (est >£2M)

WP AION-Upgrade Task 2

Design goals for 5e-19 /rt(Hz) strain sensitivity in Al-100:

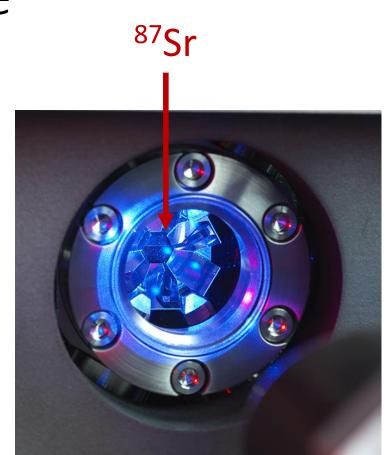
Need to shrink $\boldsymbol{\theta}$

- Task 2a: Atom Preparation
 - Prepare 10⁹ atoms at < 100 nK within 10 s; transport from sidearm to AI tube
- Task 2b: Spin Squeezing
 - Realise 20 dB of metrologically useful squeezing on the clock transition

Upgrade task 2a: Atom preparation

- High-flux ⁸⁷Sr source: 10¹¹ slow atoms/second
 - State of the art: 10⁹ atoms/second
- Big ⁸⁷Sr "blue" MOT: 10¹¹ atoms
 - State of the art: 5 x 10⁸ atoms
- Narrow-line cooling of 10¹⁰ atoms to 1 uK in dipole trap (+ optical pumping)
 - State of the art: 10⁷ atoms
- Evaporative cooling of 10⁹ atoms to < 100nK
 - State of the art: 2 x 10⁵ atoms
- Horizontal transport over 50 cm with heating < 100 nK
 - State of the art: few uK heating

Upgrade task 2b: Spin squeezing


- Apply 20 dB spin squeezing on "clock" transition
 - Option 1: Cavity either weak measurement or one axis twisting ("cavity feedback")
 - Option 2: Interactions e.g. through Rydberg dressing
- Squeezing must be metrologically useful
 - Low dephasing and decoherence
- Squeezing must not induce too much heating (< 100 nK)
 - Cavity: Challenging due to dipole forces from cavity spatial mode; Rydberg: untested
- Squeezing must be compatible with 10⁹ atoms
 - Cavity: large cavity mode volume; Rydberg: must avoid inelastic collisions
- Squeezing must be compatible with transport, lattice launch and delta-kick lens
 - Preserve squeezing in magnetic sublevels, then transfer to clock states in AI tube?
- Detection noise < 10⁻⁶ to measure squeezed population distribution

Upgrade task 2: Budget estimate

Labour: £600k £600k = 2 PDRA staff at £100k/yr each + in kind contributions (e.g. students)

Capital: £1.0M See table below

£605,000
£580,000
£125,000
£140,000
£100,000
-£550,000
£1,000,000

But this is only 10⁷ atoms...