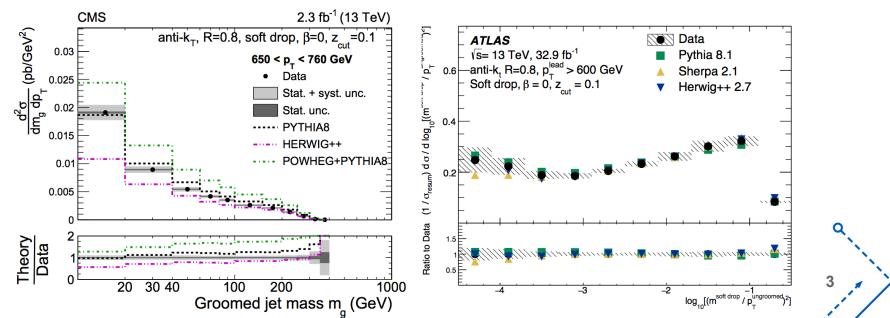

LHC JET SUBSTRUCTURE MEASUREMENT GOALS

LHC Electroweak Working Group Meeting March 5, 2019

Christine McLean University at Buffalo The State University of New York

- Informal chat on February 13 about common goals for LHC jet substructure measurements
- Representatives from ATLAS, CMS, LHCb, theory
- Aim: allow for better comparison of measurements across experiments
 - What is measured
 - How it is presented
 - e.g. common binning schemes
 - Systematic uncertainties

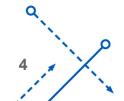

Ъ

Current measurements:

- <u>CMS</u>: jet mass, binned in p_T, dijets at 13 TeV
 - In progress: jet mass and ρ vs p_T , Z+jets at 13 TeV
- <u>ATLAS</u>: jet ρ, inclusive in pT, dijets at 13 TeV
- Both use softdrop mass

Proposal for common setup:

- Measure ρ in bins of ungroomed jet p_T
- One inclusive jet p_T bin above 300 GeV
- Common softdrop grooming parameters



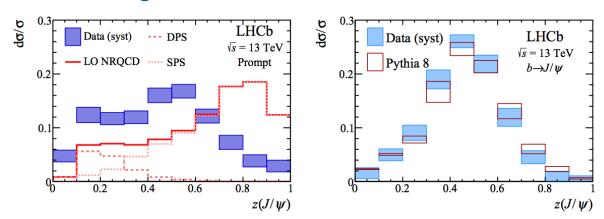
Ъ

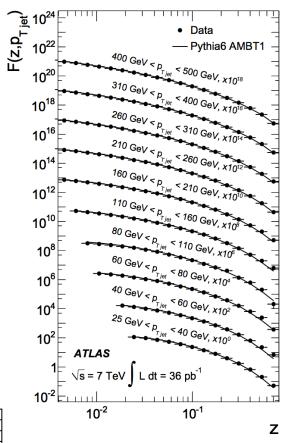
Jet Pull

- Jet pull vector gives information about color flow within a jet
- Current measurements:
 - ATLAS at <u>8 TeV, 13 TeV</u> significant data/MC differences
- Would be interesting for CMS to measure, too
- In progress: theory paper on IRC safe pull angle related observable
 - Would be interesting to have a dedicated discussion in a future meeting

Jet Fragmentation Function

• Current measurements:


- <u>ATLAS measurement for inclusive</u> <u>fragmentation</u>
- ATLAS HI comparison
- <u>Run 2 LHCb J/Ψ</u>


Proposal for common setup:

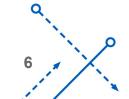
• Fragmentation function definitions vary:

$$z = \frac{p_{track} \cdot p_{jet}}{p_{jet} \cdot p_{jet}} \qquad z = \frac{p_{T,track}}{p_{T,jet}}$$

 Proposal: at least use the definition on the right

Systematic Uncertainties

• Types of jets:

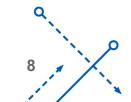

- CMS particle flow
- ATLAS (mostly) calorimeter jets

• Main jet-related uncertainties: jet mass and energy scale and resolution

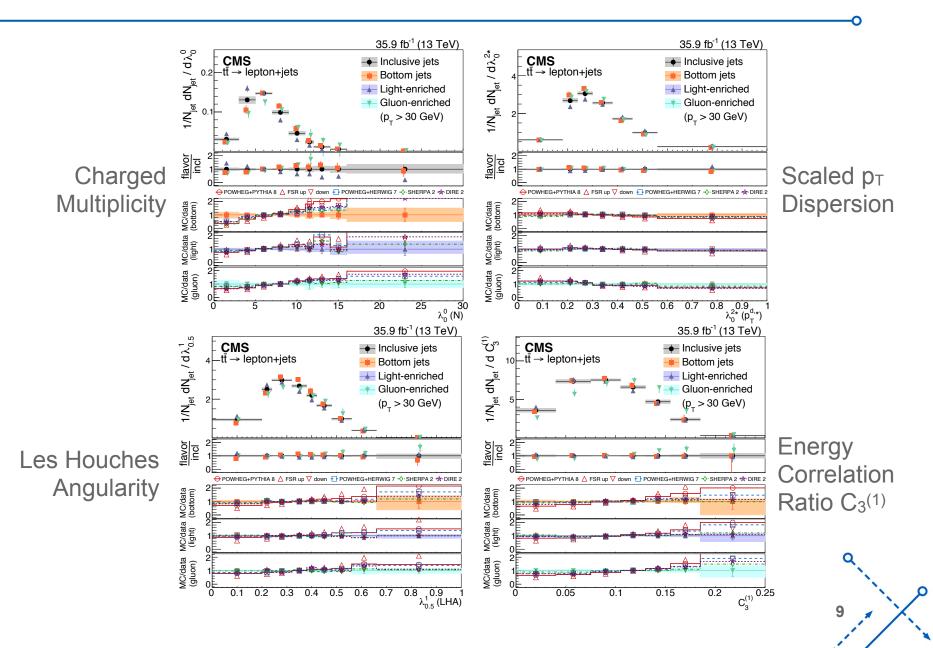
- CMS JMS and JMR uncertainty is derived from W mass
 - <u>CMS-TOP-17-013</u> has extensive measurements of substructure variables with track efficiency-derived uncertainties
 - Cross-checked internally with jet mass from W bosons, comparable
- ATLAS establish uncertainties on calorimeter inputs directly using p/E with matched tracks for cluster energy and resolution, efficiency, models of split/merging
 - Can be applied to all substructure variables
 - Automatically get correlations between JMS and JES
 - Otherwise, often treated as uncorrelated
 - Can something similar be done in particle flow?
- To do: vary parton shower scale

• Generators:

- Pythia8 is the main generator for everyone
- Alternative generator:
 - ATLAS often uses SHERPA better than HERWIG++
 - Both CMS and ATLAS moving to HERWIG7



- Interesting discussion of common goals for LHC jet substructure measurements
 - Goal: better comparison (not combination) of measurements across
 experiments
 - Link to summary on <u>TWiki</u>
- Focus on jet mass, jet pull, and jet fragmentation function
- Important to have at least one common variable definition and inclusive binning
- Common (as common as possible) jet-related systematic definitions still a work in progress
- People from ALICE are welcome to join!
- Plan for communicating and sustaining these goals to/ within larger LHC community?



Additional Material

CMS-TOP-17-013

