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Chapter 1

Kruskal-Szekeres coordinates

From Eddington-Fankelstein coordinates, It is found that there are two regions of the solutions, one
corresponds to Schwarzschild black hole and the other corresponds to white hole. These two regions
are described by two spacetime diagrams. Therefore, it is worthwhile to �nd the new coordinates
which can combine these two regions in one diagram. This is the main purpose of this section and
it corresponds to the Kruskal-Szekeres coordinates. Other motivations come from the fact that, in
Eddington-Fankelstein coordinates, one of the coordinates in spacetime diagram is still singular at
r = 2µ and the lightcone structure is not easy to sketch in the spacetime diagram. In any conformally
�at coordinates, the lightcone structure is still the same with the lightcone in Minkowski spacetime.
Therefore, it is easy the sketch the lightcone since the angle of the lightcone is �xed to 45◦ in all regions
of the diagram. Therefore, let us begin with introducing the coordinates which are conformally �at as
follow

r̃ = r + 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣ , (1.1)

dr̃ =

(
1− 2µ

r

)−1
dr ⇒ dr2 =

(
1− 2µ

r

)2

dr̃2. (1.2)

Substituting into the Schwarzschild line element in equation, one obtains

ds2 =

(
1− 2µ

r

)
(−c2dt2 + dr̃2). (1.3)

Conveniently, we omit the contribution from the solid angle by �xing θ = π/2 and φ = constant. If we
include it, the lightcone structure will not change. Each point in the spacetime diagram will represent
the two sphere of θ and φ. Note that r is no longer be the coordinate. It plays the role of function of
the coordinate r(r̃). We see that the coordinate r̃ still has singularity at r = 2µ. This implicitly leads
to the singularity of the metric at r = 2µ. In order to see how the singularity emerges in the metric,
one can investigate the metric at r ∼ 2µ. This leads to the relation

r̃ ' 2µ ln

∣∣∣∣ r2µ − 1

∣∣∣∣⇒ r

2µ
' 1± e

r̃
2µ ⇒

(
1− 2µ

r

)
' ±e

r̃
2µ , (1.4)

where the upper sign denotes the region r > 2µ and the lower sign denotes the region r < 2µ. Thus
the line element in equation (1.3) at r ∼ 2µ can be approximated as

ds2 ' ±e
r̃
2µ (−c2dt2 + dr̃2). (1.5)

From this line element, one can see that the metric blow up at r = 2µ since the coordinate r̃ will be
in�nity. In order to �nd the new coordinates to get rid of this factor, one can �rstly transform the null
coordinates such that

p = ct+ r̃, q = ct− r̃ ⇒ dr̃ =
1

2
(dp− dq), c dt =

1

2
(dp+ dq) ⇒ −c2dt2 + dr̃2 = −dp dq. (1.6)
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Substituting the results of the coordinate transformation into the approximated line element above,
one obtains

ds2 ' ∓e
r̃
2µdp dq = ∓e

p−q
4µ dp dq. (1.7)

Now we see that, in order to get rid of the divergent factor, one can �nd the new coordinates which
satisfy the relation

dp̃ ∝ e
p
4µdp, and dq̃ ∝ e−

q
4µdq. (1.8)

Therefore, one of the simple choices is that

p̃ = e
p
4µ , and q̃ = ∓e

−q
4µ . (1.9)

This leads to the relation

dp dq = ±16µ2e
− p−q

4µ dp̃ dq̃ = ±16µ2e
− r̃

2µdp̃ dq̃,

= ±16µ2e
− r

2µ
−ln

∣∣∣ r2µ−1∣∣∣dp̃ dq̃,
= ±16µ2e

− r
2µ

(∣∣∣∣ r2µ − 1

∣∣∣∣)−1 dp̃ dq̃,
= 16µ2e

− r
2µ

(
2µ

r − 2µ

)
dp̃ dq̃. (1.10)

Substituting this results back into the line element (1.3) with using the relation in equation (1.6), one
obtains

ds2 = −
(
r − 2µ

r

)
16µ2e

− r
2µ

(
2µ

r − 2µ

)
dp̃ dq̃,

= −32µ3
e
− r

2µ

r
dp̃ dq̃. (1.11)

Finally, let us transform the coordinates to the one which is in the conformally �at form. This can be
achieved by introducing new coordinates such that

p̃ = v + u, q̃ = v − u⇒ dp̃ dq̃ = −du2 + dv2, (1.12)

Substituting the result back into equation (1.11), the line element becomes

ds2 = 32µ3
e
− r

2µ

r
(−dv2 + du2). (1.13)

Now r is a function of u and v. We can see that there are no singularities of the metric at r = 2µ as
well as it satis�es the conformally �at form. The real singularity still explicitly appear in the metric.
In order to sketch the spacetime diagram, one has to �nd the relation between Schwarzschild and
Kruskal-Szekeres coordinates. Firstly, let us consider the simple relation

v2 − u2 = p̃ q̃ = ∓e
p−q
4µ = ∓e

r̃
2µ = ∓e

r
2µ

(∣∣∣∣ r2µ − 1

∣∣∣∣) = −e
r
2µ

(
r

2µ
− 1

)
. (1.14)

This relation provide us the lines at the event horizon such that v = ±u. These lines are sketched as
crossing sign which is shown in the �gure 1.1. These crossing lines separate the spacetime diagram
into four regions: left (I ′), right (I), upper (II) and lower (II ′) regions. For any constant r, it is a
hyperbolic locus. For r > 2µ, it corresponds to hyperbolic locus in left and right regions of the diagram
and , for r < 2µ, it corresponds to hyperbolic locus in upper and lower regions of the diagram which
contain the locus of the singularity.
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Figure 1.1: Spacetime diagram in Kruskal-Szekeres coordinates

To see more information of the diagram, let us consider the relation for constant time. Firstly, we
can �nd the relation of v in terms of r and t which can be written as

v =
1

2
(p̃+ q̃) =

1

2

(
e
p
4µ ∓ e

p
4µ

)
=

1

2

(
e
ct+r̃
4µ ∓ e−

ct−r̃
4µ

)
,

= e
r̃
4µ

(
e
ct
4µ ∓ e−

ct
4µ

)
= e

r
4µ

(
r

2µ
− 1

)1/2 1

2

(
e
ct
4µ ∓ e−

ct
4µ

)
,

= e
r
4µ

(
r

2µ
− 1

)1/2

sinh

(
ct

4µ

)
, for r > 2µ, (1.15)

= e
r
4µ

(
1− r

2µ

)1/2

cosh

(
ct

4µ

)
, for r < 2µ. (1.16)

We can obtain the relation of u in terms of r and t in the same manner. The results can be expressed
as

u = e
r
4µ

(
r

2µ
− 1

)1/2

cosh

(
ct

4µ

)
, for r > 2µ, (1.17)

= e
r
4µ

(
1− r

2µ

)1/2

sinh

(
ct

4µ

)
, for r < 2µ, (1.18)

Now, the relations of u and v in terms of t can be written as

tanh

(
ct

4µ

)
=
v

u
, for r > 2µ, (1.19)

tanh

(
ct

4µ

)
=
u

v
, for r < 2µ. (1.20)

From these relation, we found that the axis t = 0 corresponds to the axis v = 0 for r > 2µ and
corresponds to the axis u = 0 for r < 2µ. For r > 2µ in the right region, any value of t corresponds
the strength line. The more value of t, the more slope of the strength line until the slope becomes 1
corresponding to t =∞ as shown in �gure 1.1. The lightcone structure is still the same everywhere in
the diagram and have the future lightcone in the direction of increasing v. This leads to the fact that
the upper region correspond to the interior of the black hole while the lower region corresponds to the
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interior of white hole. We also see from the lightcone at the line r = 2µ in the upper region that the
particle never escaped from black hole while, in the lower region, particle never moved into the white
hole. The interesting results of this diagram is that there are two regions which have an asymptotically
�at Minkowski spacetime in the left and right regions or in region I and I ′. Region I is completely
described our spacetime outside black hole. This leads to the fact that there exists another world in
region I ′ which cannot be in�uenced by our world. We can see that the particle at the origin of the
diagram are restricted to go the region II which is the black hole. Thus it is impossible to move from
region I to region I ′ or inversely from region I ′ to region I. The join between these two region is called
"wormhole" which we will discuss in detail in next sections.
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Chapter 2

Wormhole and Einstein-Rosen bridge

As we have mentioned in the previous section, there is a join between two worlds which is the origin
in Kruskal-Szekeres spacetime diagram. Remembering that each point in spacetime diagram represent
2-sphere of the solid angle. Thus, there are others view point to consider this join. We have learned
that it is convenient to consider two-dimensional diagram. Now, we can choose to consider diagram in
which v = 0 and θ = π/2. This corresponds to the line element

ds2 = 32µ3
e
− r

2µ

r
du2 + r2dφ2. (2.1)

By using the relation of u2 and r in equation (1.14) , one obtains

ds2 =

(
1− 2µ

r

)−1
dr2 + r2dφ2. (2.2)

It is convenient to consider this surface by embedding it into three-dimensional Euclidian space. Since
we have the coordinate φ and r which are looks similar to the polar cylindrical coordinates, it is
convenient to consider this three-dimensional Euclidian space in polar cylindrical coordinates which
can be written as

ds2 = dz2 + dρ2 + ρ2dψ2. (2.3)

In order to embed our two-sphere into this three-dimensional Euclidian space, we have to �nd a
constraint equation to satisfy line element (2.2). This can be achieved by introducing the coordinates
such that ρ = ρ(r), z = z(r). Therefore, the line element in equation (2.3) becomes

ds2 =

((
dz

dr

)2

+

(
dρ

dr

)2
)
dr2 + ρ2dψ2. (2.4)

Then, by setting the coordinate such that ψ = φ, ρ = r, one obtains

ds2 =

(
1 +

(
dz

dr

)2
)
dr2 + r2dφ2. (2.5)

Comparing to equation (2.2), the constraint equation in di�erential form can be written as

1 +

(
dz

dr

)2

=

(
1− 2µ

r

)−1
⇒

(
dz

dr

)2

=
r

r − 2µ
− 1 =

2µ

r − 2µ
. (2.6)

This leads to the constraint equation,

z = (2µ)1/2
∫

(r − 2µ)−1/2dr = (8µ)1/2(r − 2µ)1/2 + constant. (2.7)

From this constraint equation, the generality of the surface structure is not lost by setting the constant
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Figure 2.1: Wormhole or Einstein-Rosen bridge [?]. It is another view point of the join between our
world and the other which corresponds to the line v = 0 in Kruskal-Szekeres diagram.

to be zero and we can see that this is the locus of parabolic line. At z = 0 corresponds to r = 2µ
which is the closet point to the z-axis and recognizing that for v = 0 corresponds to r ≥ 2µ. To obtain
the surface one can turn the parabolic locus around z-axis and then the surface can be shown in �gure
(2.1). From this �gure, the two world can be connected together through the throat of surface at z = 0
corresponding to origin of the Kruskal-Szekeres diagram. If we return to consider the Kruskal-Szekeres
diagram, we cannot stay at the origin point and are forced to move to region II which v > 0. Since, in
region II, the coordinate r becomes timelike coordinates, the surface which depends on r will become
to be dynamics. At v = v0 = constant where 0 < v0 < 1, the metric is still in the same form and
then the surface also has the same form. However, from the Kruskal-Szekeres diagram, when we scan
−∞ < u < ∞, the minimum of r is in the range 0 < r < 2µ. Therefore the throat of the surface
becomes more and more narrow as v increasing until v = 1 corresponding to r = 0, the throat is
pinched o�. The crosse section of the surface with various v are shown in �gure 2.2. From point of

Figure 2.2: Cross section of Wormhole or Einstein-Rosen bridge with various value of v [?]

view of Einstein-Rosen bridge, it may be possible to travel from one world to the other before the
throat of the bridge is pinched o�. However, the information from the Kruskal-Szekeres still valid and
provides us that the throat is pinched o� too quickly for any timelike particle can cross it from one to
the other world. It is important to note that this is only the solution of Einstein equation in empty
spacetime. It may be possible to construct the spacetime geometry by introducing exotic matter in
which the wormhole will not pinch o� too quickly. This is also the basic study of the time traveling
which is commonly mention in pop-science movie. Research area of this subject is still active and it is
interesting for presentation and report of the students in the course.
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Chapter 3

Reissner-Nordstrom black hole

It is interesting to ask how is the spacetime geometry if the star has a charge? Even though stars
are usually neutral, it is instructive to investigate the property of spacetime when the star carries a
charge. This investigation will provide the black hole solution called "Reissner-Nordstrom black hole"
or "charged black hole". This is the main objective of this talk.

3.1 Electromagnetism

Considering the electromagnetic force

~F = q( ~E + ~v × ~B), (3.1)

or we can write in the component form

F i = q(Ei + εjkivjBk), (3.2)

promoting to be a 4-force

f (4) = q�u(4) (3.3)

where � should be a quantity depending on ~E and ~B. Moreover, it must be a 2-rank tensor in order
to contract with a vector (u(4)) then obtain another vector (f (4)). Hence, it is possible to assume that

� ≡ Fµν , (3.4)

then,

fµ = qFµνuν . (3.5)

Considering the case of pure force (a force which preserves the rest mass) as

fµuµ = 0 ∝ dm

dτ
. (3.6)

Substituting with (3.5), we obtain a condition,

fµuµ = qFµνuνuµ = 0. (3.7)

This implies that Fµν must be an anti-symmetric tensor, Fµν = −F νµ. In addition, Fµν contains 6
independent components (it is true only in 4 dimensional spacetime).

From the fact that the �elds ~E and ~B are written in the potentials

~E = ~∇φ− ∂A

∂t
, ~B = ~∇× ~A, (3.8)
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where φ and ~A are the scalar and vector potentials respectively. In the same fashion, they are promoted
to 4-vector potential

Aµ =

(
φ

c
,Ai
)
, → Aµ =

(
−φ
c
,Ai
)
. (3.9)

According to discussion about the feature of the tensor Fµν , it is thus possible to write down

Fµν = ∂µAν − ∂νAµ. (3.10)

By comparing (3.8) and (3.10), it is found that

Ei = cFi0 = −cF0i, Bi = εijkFjk. (3.11)

The matrix form of Fµν reads

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By
Ey/c −Bz 0 Bx
Ez/c By −Bx 0

 , (3.12)

or

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By
−Ey/c −Bz 0 Bx
−Ez/c By −Bx 0

 , (3.13)

Next, we will consider the source in electromagnetism. The source must depend on the density, ρ
and current ~j = ρ ~u. From uµ = γ(c, ui), then we de�ne the 4-current density as

Figure 3.1: aaa

jµ = ρ0 u
µ = ρ(c, ui). (3.14)

From the invariant quantity uµuµ = −c2, we also have another one

jµjµ = ρ20 u
µuµ = −ρ20 c2. (3.15)
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As the ordinary form of Maxwell's equations, they read

~∇ · ~E =
ρ

ε0
, (3.16)

~∇ · ~B = 0, (3.17)

~∇× ~E = −∂
~B

∂t
, (3.18)

~∇× ~B = µ0~j + µ0ε0
∂ ~E

∂t
. (3.19)

Notice that these equations contain the �rst derivative of ~E and ~B. We �rst consider the equations
with source, (3.16) and (3.19). To obtain the left side of them, the 2-rank anti-symmetric tensor should
be taken the �rst derivative. Thus, the equation of motion should be written as

∂µF
νµ = kjν . (3.20)

where k is a constant and the contraction of indices in ∂µF
νµ is just a convention.

Considering each component of (3.20),
For ν = 0,

∂µF
0µ = kj0,

∂iF
0i = kj0, (F 00 = 0.)

∂i

(
Ei
c

)
= kρc,

~∇ · ~E = kc2ρ. (3.21)

Comparing to (3.16), the constant k is determined as

k =
1

c2ε0
. (3.22)

For ν = i,

∂µF
iµ = kji,

∂0F
i0 + ∂kF

ik =
1

c2ε0
ji,

1

c
∂t

(
−Ei
c

)
+ ∂k(εiklBl) =

1

c2ε0
~j,

− 1

c2
∂tEi + (~∇× ~B)i = µ0ji. (c2 =

1

ε0µ0
.) (3.23)

We have already obtained 2 of 4 Maxwell's equations. It is found that (3.17) and (3.19) are obtained
from the identity of the tensor Fµν as follows

, ∂[ρFµν] = 0, → ∂ρFµν + ∂µFνρ + ∂νFρµ = 0. (3.24)

Considering each component of (3.24),
For ρ = 0, µ = i, ν = j,

∂0Fij + ∂iFj0 + ∂jF0i = 0,

∂0(εijkBk) +
1

c
∂i (Ej) +

1

c
∂j (−Ei) = 0,

∂0(εijkBk) +
1

c
(∂iEj − ∂jEi) = 0,

1

c
εijk∂tBk +

1

c
εijk(~∇× ~E)k = 0,

∂tBk + (~∇× ~E)k = 0. (3.25)
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For ρ = i, µ = j, ν = k,

∂iFjk + ∂jFki + ∂kFij = 0,

∂i(εjklBl) + ∂j(εkilBl) + ∂k(εijlBl) = 0,

εjkl∂iBl + εkil∂jBl + εijl∂kBl = 0.

Contracting with εijk and using the identity εijkεijl = 2!δkl , then

εijkεjkl∂iBl + εijkεkil∂jBl + εijkεijl∂kBl = 0,

(εjkiεjkl∂iBl + εkijεkil∂jBl + εijkεijl∂kBl) = 0,

(2δil∂iBl + 2δjl ∂jBl + 2δkl ∂kBl) = 0,

6∂iBi = 0,

∂iBi = 0. (3.26)

We have seen that another form of Maxwell's equations are

∂µF
νµ = µ0j

ν , (3.27)

∂[ρFµν] = 0. (3.28)

The 2-rank antisymmetric tensor Fµν is called the electromagnetic stress-energy tensor or Maxwell
stress tensor. Moreover, the dual tensor of Fµν which is de�ned as

F̃µν = εµνρσFρσ, (3.29)

This dual tensor can be construct the same Maxwell's equations, ∂µF̃
νµ = µ0j

ν and ∂[ρF̃µν] = 0.
In other frame, the Maxwell stress tensor is transformed under the Lorentz transformation as

Fµν = ΛµρΛ
ν
σF

ρσ. (3.30)

Notice that FµνF
µν is invariant under the Lorentz transformation.

In �eld theory, the Lagrangian density can be construct as follows

L =

∫
d4x

(
−1

4
FµνF

µν

)
. (3.31)

3.2 Black hole solution with charges

In order solve the Einstein equation analytically, we will restrict our attention in spherically static
spacetime. Therefore, the left hand side of Einstein �eld equation is still the same. We can adopt the
results from two-three previous talk. Our task now is to �nd the form of energy momentum tensor
for charged object. Considering electric and magnetic charges, their energy momentum tensor can be
written in terms of �eld strength tensor as

Tµν = µ−10

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ

)
, (3.32)

where Fµν = ∇µAν −∇νAµ and Aµ are components of four-vector potential. This form of the energy
momentum tensor can be obtained from description of quantum �eld theory. You will see explicitly
how to obtain this energy momentum tensor later (properly in the chapter of �led theory for general
relativity). Note that the overall factor µ−10 is obtained by comparing T00 with the energy density of
the electromagnetic wave.

In order to obtain the energy momentum tensor satisfying spherical symmetry, the electric com-
ponents Eθ, Eφ and magnetic components Bθ, Bφ must vanish. With using the spherical coordinates,
the �eld strength tensor can be written as

Fµν =


0 −Er/c 0 0

Er/c 0 0 0
0 0 0 −r2 sin θBr
0 0 r2 sin θBr 0

 . (3.33)
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Factor r2 sin θ in front of Br comes from the covariant components of �eld strength tensor in spherical
coordinates,

Fij = εijkB
k =
√
gε̃ijkB

k ⇒ Fθφ = r2 sin θε̃θφrBr = r2 sin θBr. (3.34)

Therefore, general form of the �eld strength tensor satisfying spherical symmetry can be written as

Fµν =


0 −E(r)/c 0 0

E(r)/c 0 0 0
0 0 0 −r2 sin θB(r)
0 0 r2 sin θB(r) 0

 , (3.35)

where E(r) and B(r) are now arbitrary well-de�ned function. Even though E(r) and B(r) are arbitrary
functions, we expect that E(r) will play the role of electric �eld and B(r) will play the role of magnetic
�eld. These functions are supposed to be solved by using the the equations of motion for EM-gauge
�eld. It is important to note that, in physics we have learned, the usual magnetic �eld cannot be written
in such form since we have not observed magnetic monopole yet. However, this is an instructive study
of the geometry. It is just the toy model for theoretical study. We emphasis here also that our
consideration does not seem to be realistic situation since usual stars are neutral which is not charged
object. Thus we have considered the toy model from the beginning of our study. It is worthwhile to
study charged body with magnetic monopoles.

For curved spacetime, the equation of motion for this �eld can be written as

∇µFµν = 0, (3.36)

∇ρFµν +∇µFνρ +∇νFρµ = 0. (3.37)

Considering equation (3.36), we have

∇µFµν = ∂µF
µν + ΓµµρF

ρν + ΓνµρF
µρ,

= ∂µF
µν + F ρν

1√
−g

∂ρ
√
−g +

1

2
Γνµρ (Fµρ − F ρµ) ,

=
1√
−g

∂ρ
(√
−gF ρν

)
+

1

2

(
ΓνµρF

µρ − ΓνρµF
ρµ
)
,

=
1√
−g

∂ρ
(√
−gF ρν

)
. (3.38)

For ν = 0, one obtains

∇µFµ0 =
1√
−g

∂µ
(√
−gFµ0

)
,

=
1

eα+βr2 sin θ
∂1

(
eα+βr2 sin θF 10

)
,

=
1

eα+βr2 sin θ
∂1

(
eα+βr2g11g00 sin θF10

)
,

=
1

ceα+βr2
∂r

(
e−(α+β)r2E

)
= 0,

∴ e−(α+β)r2E = C, ⇒ E =
Ce(α+β)

r2
, (3.39)

where C is a constant. This constant can be obtained by considering the metric with large r. For large
r, the metric becomes to be Minkowski and the function must reduce to the electric �eld of a point
charge as follow

E =
Q

4πε0c2r2
=
C

r2
, ⇒ C =

Q

4πε0
. (3.40)

Therefore, the function E representing the electric �eld of a charged object can be written as

E =
Q

4πε0

e(α+β)

r2
. (3.41)
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In order to �nd the form of B, let us consider the second equation of motion with component
(ρ, µ, ν) = (r, θ, φ). Therefore, equation (3.37) becomes

∇ρFµν +∇µFνρ +∇νFρµ = 0,

∂ρFµν + ∂µFνρ + ∂νFρµ = 0,

∂rFθφ = 0,

∂r(r
2 sin θB) = 0, ⇒ B =

C

r2
, (3.42)

where C is a constant. In the same fashion with �nding the constant of the electric �eld, the constant
C can be written as

C =
µ0P

4π
, (3.43)

where P is a source representing the magnetic monopole. Therefore, the function B representing the
magnetic �eld of a point magnetic monopole can be written as

B =
µ0P

4π

1

r2
. (3.44)

Now we will return to consider the energy momentum tensor of the charged object in equation
(3.32). Considering the second term in equation (3.32), one has

FρσF
ρσ = gρρ

′
gσσ

′
FρσFρ′σ′ ,

= 2g00g11F01F01 + 2g22g33F23F23,

= 2
(
−e−2(α+β)E2/c2 +B2

)
. (3.45)

By using this relation, component (0, 0) reads

T00 = µ−10

(
F0ρF

ρ
0 −

1

4
g00FρσF

ρσ

)
,

= µ−10

(
e−2βE2/c2 +

1

2
e2α
(
−e−2(α+β)E2/c2 +B2

))
,

=
µ−10

2
e2α
(
e−2(α+β)E2/c2 +B2

)
,

∴ T 0
0 = g00T00 = −µ

−1
0

2

(
e−2(α+β)E2/c2 +B2

)
. (3.46)

Using the same procedure calculation, other non-zero components of the energy momentum tensor can
be written as

T 1
1 = T 0

0 = −µ
−1
0

2

(
e−2(α+β)E2/c2 +B2

)
, (3.47)

T 2
2 = T 3

3 =
µ−10

2

(
e−2(α+β)E2/c2 +B2

)
. (3.48)

Substituting these components into Einstein �eld equation and using the results of Einstein tensor in
equations one obtains

2rβ′e−2β − e−2β + 1 =
4πG

c4µ0
r2
(
e−2(α+β)E2/c2 +B2

)
=
q2 + p2

r2
, (3.49)

2rα′e−2β − e−2β + 1 =
4πG

c4µ0
r2
(
e−2(α+β)E2/c2 +B2

)
=
q2 + p2

r2
, (3.50)

rα′2 − rβ′α′ + rα′′ + (α′ − β′) =
4πG

c4µ0
e2βr

(
e−2(α+β)E2/c2 +B2

)
=
q2 + p2

r3
e2β, (3.51)
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where

q2 =
GQ2

4πε0c4
, p2 =

GP 2

4πε0c6
. (3.52)

Combining equations (3.49) and (3.50), one obtains

α′ + β′ = 0, ⇒ α+ β = constant = 0, ⇒ α = −β (3.53)

where we have used the asymptotic Minkowski metric as r →∞ to obtain constant = 0. From equation
(3.49), one can solve this equation for B as follow

2rβ′e−2β − e−2β + 1 =
q2 + p2

r2
,

− d

dr

(
re−2β

)
+ 1 =

q2 + p2

r2
,

d

dr

(
re−2β

)
= 1− q2 + p2

r2
,

re−2β = r +
q2 + p2

r
+ C,

e−2β = 1 +
q2 + p2

r2
+
C

r
,

e−2β = 1 +
q2 + p2

r2
− 2µ

r
,

(3.54)

where we have used the condition in which the metric must recover the Schwarzschild metric as q and
p vanish to obtain C = −2µ. Therefore, the solution can be expressed as

ds2 = −
(

1− 2µ

r
+
q2 + p2

r2

)
c2dt2 +

(
1− 2µ

r
+
q2 + p2

r2

)−1
dr2 + r2dΩ2,

= −
(

1− 2µ

r
+
q2em
r2

)
c2dt2 +

(
1− 2µ

r
+
q2em
r2

)−1
dr2 + r2dΩ2,

= −∆(r) c2dt2 + ∆(r)−1dr2 + r2dΩ2. (3.55)

For simplicity we have set q2em = q2 + p2. Without electric and magnetic charges corresponding to
qem = 0, this metric is reduced to Schwarzschild metric. The intrinsic singularity still take place at
r = 0. This singularity can be inferred from the curvature square RµνρσR

µνρσ as the same argument
discussed in the Schwarzschild case. The coordinate singularity will modify by changing

1− 2µ

r
= 0 ⇒ 1− 2µ

r
+
q2em
r2

= 0. (3.56)

Therefore, the maximum number of the singularity points is extended from one to two. This possible
two points can be found by solving the above equation as follow

r2 − 2µr + q2em = 0 ⇒ r = r± = µ±
(
µ2 − q2em

)1/2
. (3.57)

It is convenient to separate our analysis into three cases; µ2 < q2em, µ
2 > q2em and µ2 = q2em.

3.3 Case 1: µ2 < q2
em

From the equation (3.57), the singularity points, r±, will be imaginary. This implies that there are
no coordinate singularities in this case. Since there are no event horizons, the coordinate t is still the
timelike coordinate in all points of the spacetime inferring also from the fact that ∆(r) does not change
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its sign. The importantly consequent result is that one can travel from asymptotically �at region to
the intrinsic singularity point, r = 0, and then return back to asymptotically �at region again.

An intrinsic singularity without covering of the coordinate singularity like this case is called "naked
singularity". In physics, the information at an initial event will provide in�uence of the information
other future timelike events. This means that the physical information occurring at the singularity point
will a�ect the physics in the asymptotically �at region. However, at singularity point, physics is not
well-de�ned. Therefore, all results at asymptotically �at region receiving information from singularity
point are not well-de�ned. This situation will contradict with our traveling since we can come back
from the singularity point as mentioned above. We expect that quantum gravity theory will solve this
problem of classical general relativity. One of possible arguments to avoid this problem is suggested
by Penrose which is known as "cosmic censorship conjecture (CCC)"; "naked singularities cannot form
in gravitational collapse from generic, initially nonsingular state in an asymptotically �at spacetime
obeying the dominant energy condition". Note that the CCC does not imply that the naked singularity
cannot exist, it just provide that the naked singularity cannot be formed. Even though CCC is just
a conjecture which has not been proof yet, the great e�ort to �nd the convincing counterexamples is
not successive. Until now, the precise proof of this conjecture is one of the outstanding problems of
general relativity.

One of simple example of the star in this case is that the star forming by collecting only huge amount
of electrons. It is clear that qem > µ since electron mass is very tiny. However, it is well-known that
coulomb force is repulsive and much strength than gravitational force. In this sense, it is impossible
to form the star belonging to this case. This simple thinking is one of the examples sporting the
argument of the cosmic censorship conjecture. Note that this situation is not really concise argument
since collecting electrons to form the star may use the e�ect of quantum theory.

To understand more about the formation of this kind of the star, let us compare the result with
the Schwarzschild one as follow

∆(r) =

(
1− 2µ

r
+
q2em
r2

)
= 1− 2G

c2r

(
m− c2q2em

2Gr

)
= 1− 2G

c2r
meff (r). (3.58)

Now we have Schwarzschild-like metric with e�ective massmeff depending on r. We can see that, in the
case of large q2em, the e�ective mass will becomes negative. This corresponds to repulsive gravitational
force which break the mechanism to form the star. Moreover, in quantum theory, the negative mass
corresponds to the unstable state and may lead to an unphysical state.

3.4 Case 2: µ2 > q2
em

From the equation (3.57), there exist two real solutions for coordinate singularity. At large r, the metric
tends to recover Minkowski metric. A particle radially fall inward from this region will encounter the
coordinate singularity point r+. Since the sign ∆(r) is changed, crossing this horizon, the coordinates t
and r will change their role similar to Schwarzschild case. The coordinate r becomes timelike coordinate
and the particle is forced to move in the direction with decreasing radial. This implies that the observer
at rest far away from back hole will experience the same situation with the observer from Schwarzschild
case. However, the particle motion will change when the particle reaches the second horizon, r−. It is
found that ∆(r) will change its sign when r = r−. This means that the coordinate t becomes to be the
timelike coordinate and r will be the spacelike coordinate again. Therefore, particle inside the radius
r− will be forced to move in the direction with increasing time t. Therefore, particle now can decide
to move inward to the singularity point or move outward to asymptotic region. In the case of outward
moving, the particle will move back to r− and the coordinate t and r will change their role again.
The coordinate r becomes timelike coordinate. The particle is unavoidably move in the direction with
increasing radial. Then particle will reach the point with radius r+ and the coordinates t and r will
change their roles again. Outside the outer horizon, the coordinate t becomes timelike coordinate
again. At this point, particle can decide to go back into the black hole or go to the asymptotic region.
However, this asymptotic region is other regions at which it came from in the previous one. In the
case of going into the black hole, particle may repeat its traveling as many times. However, the black
holes and the asymptotic regions are di�erent.
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3.5 Case 3: µ2 = q2
em

From the equation (3.57), there exists only one real solution for coordinate singularity. It can imagine
that it is a special case of the case µ2 > q2em in the sense that the outer and inner horizon becomes the
same value r = r+ = r− = µ. Comparing to case 2, the region between the inner and outer horizon
will disappear. Therefore, there is no region for r to be a timelike coordinate. In other words, t is
always timelike coordinate except at r = µ, both t and r becomes null coordinates. This case is known
as "extreme Reissner-Nordstrom black hole". It is found that the timelike particle motion is similar to
case 2. The di�erence is that there are no regions between r− and r+. The black hole tunnels in which
the particle can move from our world to other worlds also exist in this case. It is important to note that
this kind of black hole is very famous among theoretical toy models. The reason may come from the
simplicity of calculation while the phenomenon is still similar to the complicated case. Moreover, it is
also compatible with supersymmetric theories where it may exist when supersymmetries are unbroken.
However, it not easy to exist in the realistic situation since adding a little bit mass will lead to another
case. This means that this con�guration of black hole is not stable.

Note: for RN geometry, there exist the black hole tunnels which one can move from our world to
other worlds as found in conformal diagram. However, it is found that these tunnels are very sensitive
to the static assumption and spherical symmetry we impose. If we move into the black hole, it means
that we perturb the assumption and symmetry. This will destroy the structure of the tunnel and make
it unstable. Therefore, the tunnel cannot exist in the realistic situation.

As we mentioned before, the conformal diagram provides us that the particle can move inward to
the real singularity point at r = 0. One may ask that how much energy of the particle to take itself to
this point. In order to obtain the answer, let us consider the e�ective potential of a radial motion of
particle. By playing in the same way with we have done in Schwarzschild case, we have

1

2
ṙ2 +

(
q2em
2r2
− µ

r

)
=
c2(k2 − 1)

2
, ⇒ Veff =

q2em
2r2
− µ

r
. (3.59)

Note that this e�ective potential can be used for all cases of our consideration. The potential can be
sketched in three cases with parameters q2em = µ2/2, q2em = µ2, q2em = 2µ2 as shown in �gure 3.2.

From this e�ective potential, it is found that, in the region r < r− < rmin where rmin = µ/2, µ, 2µ
respectively, the slope of the potential is negative. This means that the e�ective force acting on the
particle will be repulsive. This behavior can be also inferred from the negative e�ective mass as r small
in equation (3.58). The value of e�ective potential becomes in�nity as r → 0. Therefore, the energy of
the particle must be in�nity in order to move to the real singularity. In other words, it is impossible
to move to the real singularity.
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Figure 3.2: E�ective potential for radial motion of massive particle in three cases. The solid, dashed and
dotted lines represent the plot with parameters q2em = µ2/2, q2em = µ2, and q2em = 2µ2 corresponding
to case1, case2 and case3 respectively.
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