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Monolithic Silicon Pixel Detectors 

Depleted Monolithic Active Pixel 
Sensors for ATLAS 

•  Thin detector with high 
granularity  

•  Low cost cf hybrid pixel due to 
large-scale CMOS production 
without bump-bonding 

•  Allows very thin sensors to 
achieve ultimate low mass 
trackers (0.3% X/X0) 
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MAPS in HEP & Heavy Ion Physics:  
•  E.g. STAR HFT, ALICE ITS ALPIDE 

chip from TJ 180 nm to be installed 
during ALICE tracker upgrade in LS2 

•  Typically collect charge via diffusion, 
but need depletion to go above 1e13 
neq/cm2  

For ATLAS ITk L4: Rad hardness: NIEL 
1e15 neq/cm2,TID >80 MRad & Hit rate  > 
100 Mhz/cm2 based on original specs for 
ITK outermost pixel layer 
•  Innermost layers: CMOS interesting 

option for future upgrades (>LS3) for 
biggest physics gain: small pixel 
(~25µm) & thin (~50µm?) - tough 
specifications will require strong R&D 

 



Towards radiation hard MAPS… 

…there were several obstacles to overcome: 
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Depletion is key: 

•  At high radiation levels (>1016 
neq/cm2) the ionization charge is 
trapped in the non-depleted part 

•  Diffusion makes signal collection 
slower than typical requirements 
for pp-colliders for pixel pitches 
around typical 50µm 

Readout architectures are low 
power but not designed for high hit-
rates of pp experiments at LHC or 
future pp colliders 
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ATLAS CMOS Pixel Collaboration 
•  Collaboration of ~25 institutions 
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For ATLAS Prototypes from LFoundry 150 nm, AMS 180 nm, and Tower Jazz 180 nm 
designed for ATLAS radiation specifications  



The STREAM Project 

•  The STREAM Project is the Marie Skłodowska Curie Innovative 
Training Network for CMOS Sensor Development in the context of 
LHC experiments and for selected industrial applications 

 
 
•  The STREAM research and training program focuses on the 

development of radiation hard CMOS sensor technologies for 
innovative scientific and industrial instruments. 
 

•  STREAM offers 17 fellowships for the Early-stage researchers to 
participate in the design and test of novel radiation hard CMOS sensors 

•  Parts of the ATLAS CMOS RD on CMOS sensors are supported through 
the STREAM MC fellows 

•  STREAM Website: http://stream.web.cern.ch/ 
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Small electrode designs 
•  Small electrode design allows for small pixel size, low capacitance and low 

power but require special measures for full radiation hardness  

•  Electrode separated from 
circuitry  

•  No analog-digital cross-talk 
•  Smaller pixels 

•  Allows for small pixels and 
high spatial resolution 
(<50x50µm2)  

•  Small diameter electrode (3µm 
diameters) to achieve minimal 
capacitance (<3fF) 

•  Low power due to low 
capacitance: bias current 
500nA/pixel or <70mW/cm2 

H. Pernegger Hiroshima Conference 12th December 
2017  
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MALTA Pixel 



•  The ATLAS “MALTA” and “MonoPix” chips for high hit rate suitable for HL-LHC pp-
collisions  

–  Radiation hard to >1015 n/cm2 & Shaping time 25ns (BC = 25ns) 
–  MALTA: Asynchronous readout architecture for high hit rates and fast signal response 
–  MonoPix: Synchronous Column drain readout architecture with ToT measurement 

MALTA & MonoPix –	Depleted CMOS  
sensors with small electrodes 

The “MALTA” chip (2 x 2 cm2) 
Asynchronous readout 

architecture 

The “TJ-Monopix” chip (2 x 1 cm2) 
Synchronous readout architecture.  

 

Design of two large scale 
demonstrators to match 

ATLAS specifications for outer pixel 
layers 
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See talk C. Bespin See poster L. Flores, 
P. Riedler 



H. Pernegger/CERN Dec 16, 2019 HSTD2019 Hiroshima 8 

•  Small collection electrode (few um²) 
•  Small input capacitance (<3fF) allows for fast & low-noise Front-end (ENC<10e-) 
•  High S/N for a depletion depth of >20um 
•  To ensure full lateral depletion, uniform n-implant in the epi layer (modified process with 

inital tests on Alice Investigator, then ATLAS MALTA, MiniMALTA, MonoPIX) 

W. Snoeys et al. DOI 10.1016/j.nima.2017.07.046 
  

Novel CMOS Depleted MAPS with 
small electrodes 

H. Pernegger et al 2017 JINST 12 P06008 
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•  Good analog performance for ENC and timing 
•  But not sufficient efficiency after 1015neq/cm2 
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Shared signal from 
neigb. Pixel hits 

Leading hits 

MALTA after irradiation 
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Efficiency with small electrodes 
•  Due to small collection electrode, the field 

configuration and charge collection under 
DPW in pixel corner is critical 
•  Require full depletion under the DPW 
•  Operating at low threshold is essential 
•  Transversal field components in corner is 

needed for radiation hardness 
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Unirradiated @ 250e- threshold 
2x2 pixel at 36µm pitch  

Irradiated 1015n/cm2 @ 350e- threshold 
2x2 pixel at 36µm pitch  
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n-
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The MiniMALTA sensor 
•  MPW/TJ180nm run in 2019 to prototype 

further improvements in implant structure 
and front-end 
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•  Matrix with 64x16 
pixels in 8 sectors 

•  36.4µm pixel pitch 
•  Asynchronous 

column design 
(MALTA) 

•  synchronization 
memory at EoC 
(end-of-coulmn) to 
synchronize with 
320/640Mhz clk 



Optimization for radiation hardness 
The MiniMALTA sensor 

•  Special layouts for deep p and n wells to optimize field configuration and charge 
collection 

•  Increase lateral field near pixel edge to “focus” charge to electrode 
•  Also can improve time-resolution and charge sharing (see poster by T. Kugathasan on 

FastPix & presentation by M. Munker on CLIC) 
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M. Munker PIXEL 2018 / 10.1088/1748-0221/14/05/C05013 Common development 
with CLICTD  
(presentation M. Munker)  



Optimized Front-End 
•  MALTA/MonoPix Front-End improvements prototyped in 

MiniMALTA to increase gain and reduce noise 
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Increased Cs & 
Transistor sizes: 
 
Increased gain 
 
Reduce ENC 
noise & 
threshold 
dispersion 
 
Reduce RTS 
noise (observed 
in MALTA and 
MonoPix) Malta & MonoPix Front-end design 



The MiniMALTA Sensor –  
improved radiation hardness 

64x16 pixels in 8 sectors to investigate different implant structures and FE 
transistors 
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Modified 
Process 

Modified 
Process plus 
additional 
DPW 

Modified 
Process 
with gap in 
n- layer 

 M. Dyndal et al., arXiv:1909.11987 



MiniMALTA analog 
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Gain increased by 
factor 1.7 

Threshold reduced by factor ~x2 over original 
front-end design (300e- to 570e- at same setting) . 
Threshold dispersion was 30-50e- now 22-30e- 

ENC noise similar mean (10e- pre-irrad, 20e- 
after irradiation) but substantially less RTS noise 



Efficiency before/after 1015 neq/cm2 
irradiation 
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Beam test results show that >98% efficiency is reached after 1015 neq/cm2 
through the combination of FE improvement and charge collection improvement in 
pixel corners on high resistivity epitaxial p-type substrate (25-30µm) 

98% 
efficiency 
after 1015 
neq/cm2   

MiniMALTA 
TJ180nm 
36x36µm2 

 M. Dyndal 
et al., arXiv:
1909.11987 
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γ-irradiation to 100Mrad 
•  Irradiated MiniMALTA to 100Mrad 
•  Measured analog performance during irradiation  

•  No substantial annealing carried out, always use pre-irrad setting (no 
optimization) 

•  ENC increase from 10e- to 20e- @100Mrad, Gain unchanged to 
100Mrad 
•  Some “bump” between 1 to 10Mrad – under investigation 
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New front-end 
Original front-end 

New front-end 
Original front-end 

See L. Simon Argemi / Uni Glasgow TWEPP 2019 
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Efficiency vs threshold 
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Implant modified 
– original Front-
end 

Implant modified 
PLUS Improved  
Front-end 

For full efficiency after irradiation on epitaxial substrate 
need improved front-end plus implant modification 



New MALTA on HR Cz substrate 
•  Original MALTA & MonoPix matrix 

reprocessed on high resistivity Cz 
substrate material 

•  Allows for significant larger depletion 
and signal -> prospects for even 
higher radiation hardness and 
possible improved time-resolution with 
O(1ns) 
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MALTA-Cz 
20x22mm 

MALTA-Cz main features 
Pixel Pitch  36.4x36.4 µm2 

Matrix size / active area 512x512 /18.3x18mm2 

Hit rate capability >> 100MHz/cm2 

Time resolution <10ns (under test) 
TID radiation hardness >100Mrad 
NIEL radiation hardness >1015 neq/cm2 



Key objectives for MALTA-Cz 
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•  Objective : improve radiation hardness 
•  n- layer gap and 2nd DPW as already implemented in MiniMalta 
•  Enlarge signal through thick substrate (100 to 300µm p-type high 

resistivity Cz substrate biased to ~50V) 
•  Objective : cluster size / better timing 

•  Better slew rate with thin pCz 100um  operating at ~50V  
•  Cluster size: EPI vs Cz – if clusters are larger on Cz due to different drift 

path we can improve spatial resolution through charge weighting 
•  Must avoid punch-through on Cz to allow higher operation voltage Vsub 

>> Vpwell 

Substrate Implant 
configuration 

EPI (30µm) N- gap and 2nd DPW 

Cz HR Continuous n- layer, 
n- gap and 2nd DPW 

Produced Summer 2019 – First 
irradiation and beam test results now 



Operation voltage MALTA-Cz 
•  Received MALTA-Cz August 2019 - neutron irradiated full-size MALTA-Cz 

(2x2cm2) at Triga reactor IJS/Slovenia 
•  Breakdown voltage > 50V , even on sensor with gap in n-layer 

•  TCAD predicts lower Vbd – under investigation  

•  Good prospects for high depletion depth (larger than EPI – substrates)  
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1x1015 neq/cm2  1x1015 neq/cm2  

Preliminary Preliminary 

High operation voltage achieved 
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Efficiency MALTA-Cz  
•  n-irradiated (IJS) to 2x1015 neq/cm2 followed by DESY beam test 
•  Full-size MALTA sensor with original front-end design on HR pCz 
•  Preliminary Efficiency (shown as 2x2 pixel x-y dependency) 

compared unirradiated – 1x1015 neq/cm2 - 2x1015 neq/cm2  
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MALTA Cz n-gap 
2x1015 neq/cm2  

 

ε = 95.4% 

MALTA Cz n-gap 
1x1015 neq/cm2  

 

ε = 97.0% 

MALTA Cz 
unirradiated 

 

ε = 98.5% 

Thres = 427e- 

ENC = 9.8 e- 
Thres = 260 e- 

ENC = 12.7 e- 
Thres = 226 e- 

ENC = 14 e- 

50% 

100% 

E
fficiency 



Cluster size MALTA-Cz vs EPI 

•  Unirradiated MALTA sensor substrate comparison 
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•  Substantially more charge sharing in Cz material 
•  Cluster size increases with substrate voltage as depletion depth & drift path 

length increases in Cz substrate 
•  Expect better spatial resolution in Cz due to charge interpolation -> to verify in 

high energy beam test 

Lo
g 

Sc
al

e 
! 

Substrate 
voltage 
increase 

EPI 

Cz 

Preliminary 



Next in TJ180: MALTA & 
MonoPix Version 2 

•  Based on recent 2 years R&D on radiation hard 
high-granularity monolithic sensors with small 
electrodes in TJ180nm 

H. Pernegger/CERN Dec 16, 2019 HSTD2019 Hiroshima 24 



Next in TJ180: MALTA & MonoPix 
Version 2 

•  New Front-End design for ~x2-x3 higher gain, less 
noise 

•  Threshold adjustment on pixel level 
•  New implant designs, reset optimization 
•  New HR pCz substrate as well as EPI substrate 
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Increased Cs  
& Transistor sizes (now 
minimum length) 
 
Increased gain,  
reduced threshold 
dispersion & reduced 
RTS noise 
 
Diode reset for 
increased TID 
robustness 



MALTA & MonoPix Version 2 

•  New Matrix designs 512x512 and 512x226 for MonoPix V2 and MALTA V2 
•  7-bit ToT for analog measurements (MonoPix) 
•  Reduced column latency (~4ns) and timewalk for best time resolution (MALTA) 
•  Submission : Q1/2020 – Tests & Results Q2- Q3/2020 
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HSTD 2019 See Presentation and Poster by 

Christian Bespin & Leyre Flores 

 



Summary & Outlook 
•  The development of new depleted monolithic CMOS sensors in 

HR/HV CMOS process progresses rapidly 

•  Small electrode designs like TJ180nm produced MALTA and 
MonoPix sensor matrices offer low capacitance, low noise and low 
power solutions for fine-pitch (<50µm) pixel sensors 

•  For the first time we have achieved full radiation hardness to 
100Mrad & 1015 neq/cm2 with small electrodes on MALTA sensors 

•  Significant improvement in front-end performance  
•  Substantially larger signal on pCz substrate - High substrate bias voltage of 50V  

•  We are now implementing all knowledge in next generation 
sensors designs of MALTA & MonoPix Version 2 in two large-size 
matrices for submission in Q1/2020 
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DMAPS/CMOS for Future Trackers 

•  Strong interest for R&D to fully exploit potential of MAPS in future 
Trackers 
•  High granularity, Low material budget and power, Large area at reduced cost 

(cf hybrid) 
•  CMOS foundries offer substantial processing power to enable significant 

performance gains 
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RHIC 
STAR 

LHC - ALICE 
ITS 

CLIC HL-LHC 
Outer Pixel 

HL-LHC 
Inner Pixel 

FCC pp 

NIEL [neq/cm2] 1012 
 

1013 <1012 
 

1015 1016 1015-1017 
 
 

TID 0.2Mrad <3Mrad <1Mrad 80 Mrad 2x500Mrad >1Grad 

Hit rate [MHz/cm2] 0.4 10 <0.3 100-200 2000 200-20000 

Ultimate Sensor 
Alpide Sensor Monopix & AtlasPix & Malta Sensor 
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Malta 



CMOS sensor designs 

•  Purse different design approaches for optimal performance 

H. Pernegger/CERN Dec 16, 2019 29 

•  Large electrodes 

 

•  Electronics in collection well  
•  No or little low field regions 
•  Short drift path for high 

radiation hardness 
•  Large(r) sensor capacitance 

(dpw/dnw) ->higher noise 
and slower @ given pwr 

•  Potential cross talk between 
digital and analog section 

•  Small electrodes 

 

•  Electronics outside collection 
well  

•  Small capacitance for high 
SNR and fast signals 

•  Separate analog and digital 
electronics 

•  Large drift path -> need 
process modification to 
usual CMOS processes for 
radiation hardness 

HSTD2019 Hiroshima 

•  “Burried” 
electrodes (SOI) 

 

•  Electronics and sensor in 
separate layer  

•  Can use thick or thin high 
resistivity material and 
HV (>200V)  

•  Special design/
processing to overcome 
radiation induced charge 
up of oxides 



Initial results on small electrodes 
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2017 Irradiated TJ 
Investigator sensor 

Efficiency 97.4% 
After 1015 neq/cm2 

at low threshold (<100e-)  

2018 MALTA & TJMonoPix measurements 
•  Both chips work – same FE design, 

different readout architecture 
•  Tests ongoing (lab, beam tests, irradiations) 

show excellent ENC ~ 8e- 

MALTA Sr90 source 

MALTA Fe55 

MonoPix:  
S-curves 
Threshold 
distribution 

µ = 233e- 
σ = 15e- 

H. Pernegger et al 2017 JINST 12 P06008 
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MALTA readout architecture 
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•  Matrix design optimize for very 
high hit-rate (in circuit simulation 
1 GHz/cm2) 

•  Each pixel hit is generates a LE 
signal (0.5 to 2ns) on its line of 
the pixel bus 

•  Group number encoded on 5-bit 
group address bus 

•  One fast “HitOR” generated for 
blue and red groups 

•  All signals are transmitted 
asynchronously at the time of 
the discriminator output (plus 
gate delays) 


