

arXiv:1908.06182

Measured Effectiveness of Deep N-well Substrate Isolation in a 65nm Pixel Readout Chip Prototype

Peilian Liu^{*1}, Maurice Garcia-Sciveres², Timon Heim², Amanda Krieger², Dario Gnani²

¹ Institute of High Energy Physics ² Lawrence Berkeley National Laboratory

1. Introduction

FE65-P2 chip (65nm bulk CMOS process) was fabricated twice with different isolation strategies.

A very rare opportunity to prototype and test the same complex circuit with different isolation strategies.

Double Isolation: both digital and analog are in deep n-wells

Digital Isolation: only digital is in deep n-well; analog is on substrate

p+ p+ n-well	n+ n+ p-well	p+ p+ n-well	n+ n+ p-well		p+ p+ n-well	n+ n+ p-well	p+ p+ n-well	n+ n+ p-well
deep n-well		deep n-	deep n-well		deep n-	well		
p-substrate					p-substrate			

2. Single pixel measurements w/o noise injection

- + If isolation is not enough, noise in digital spreads into analog
- Noise observed in analog

 $\boldsymbol{\sigma}_{\mathbf{A}\otimes\mathbf{D}} = \sqrt{\boldsymbol{\sigma}_{\mathbf{A}}^2 + \boldsymbol{\sigma}_{\mathbf{D}}^2}$

 $\sigma_{\rm A}$: Intrinsic analog noise width $\sigma_{\rm D}$: Width of the noise spreads from digital to analog

• σ_A is obtained with **digital off** by fitting S-curve in each pixel.

25

20

20

30

 $\sigma_{\rm D} = \sqrt{\sigma_{\rm A\otimes D}^2 - \sigma_{\rm A}^2}$

50

60

 $\sigma_{_{
m D}}$ [e]

3. Pixel matrix measurements w/ noise injection

To induce noise in digital by varying current in the pixel columns

Frequency dependence of the noise

 Did see noises spreading into analog from digital

4. Summary

The digital isolation is better than the double isolation.

Noise is coupling through the metal stack rather through the substrate.

The double isolation has a higher impedance analog ground that is easier to shake by noise coming from the metal stack.

coupling obtained using sine waveform

 $I_{\text{inject}} = 1.2 \text{mA}$ for double isolated chip

 $I_{\text{inject}} = 2.4 \text{mA}$ for digital isolated chip

- Simulated Power Supply Rejection Ratios for the power and ground rails of the FE in the double isolated chip
- The digital noise coupling in the double isolated chip is due to noise injection from the digital power network to the FE ground, rather than through the isolated substrate.

80

 $\sigma_{D'}[e]$

60

