Belle II Pixel Detector

Commissioning and Performance

Hua Ye

On behalf of Belle II PXD - DEPFET Collaboration

HSTD12, Dec.14-18, 2019, Hiroshima

SuperKEKB and Belle II

SuperKEKB delivers e^+e^- collisions at 10.58 GeV (M_{Y(4S)}), with a target peak luminosity of

 8×10^{35} cm⁻²s⁻¹, 40 times larger than that of KEKB.

- Increase beam currents twice
- Reduce vertical beam spot size by a factor of 20
- Belle II detector has accomplished a series of upgrades to
 - Improve the overall performance
 - Cope with the increased background and high trigger rate.
- Aim to accumulate a dataset of 50 ab⁻¹ by ~2027, to study flavour physics and explore new physics beyond the standard model.

Highlights of Belle II Status

- Collisions started in Spring 2018, "Phase 2".
 - Mainly for beam commissioning,
 - with a dedicated vertex detector to study beam background.
 - 0.5 fb⁻¹ data recorded.
 - Physics data taking has started in March 2019, "Phase 3".
 - With Belle II VXD
 - ✤ 10 fb⁻¹ data recorded.
 - ♦ Aim to collect 200 fb⁻¹ by summer 2020.
- On Dec.3, Belle II achieved to record data at luminosities in excess of 10³⁴ cm⁻²s⁻¹ (KEKB design luminosity)

Date

Plot on 2019/12/12 18:23

DEPFET PXD for Belle II

Depleted P-channel Field-Effect Transistor (DEPFET) combines detection and amplification within one device.

Each pixel is a p-channel FET on top of fully depleted silicon bulk

- Fast charge collection (~ns)
- Charges collected in the "internal gate"
- Readout of modulated drain current
 - internal amplification

$$g_q = \frac{\partial I}{\partial q} \approx 500 \frac{pA}{e^-}$$

- High Signal to Noise Ratio (SNR)
- Periodical clearing of "internal gate" required to reset the pixel

PXD Module Concept

Pixel size: varies in z direction, 50 x 55-85 μm²

- optimized to have the best resolution in forward direction around 45° incident angle
- ✤ 250 x 768 pixels per module
- By thinning the active sensor thickness can be reduced to as little as 50 µm.
- For optimal position resolution (COG) 75µm
 were chosen for PXD
- ✤ 3 Metal layers for circuitry
 - ጳ 2AI + 1Cu
- Mechanically self-supporting device

DCD:Drain Current Digitizer,

- 💠 UMC 180 nm
- 256 input channels
- pipeline 8-bit ADC per channel
- 92 ns sampling time
- Rad. hard proved (10 Mrad)

DHP: Data Handling Processor

- TSMC 65 nm
- Size 4.0x 3.2 mm²
- Common mode and pedestal correction
- Data reduction (zero suppression)
- Timing and trigger control
- Transmit 1.6 Gbit/s of data over a 15 m cable to the backend.
- Rad. Hard proved (100 Mrad)

Switcher: Row control

- AMS/IBM HVCMOS 180 nm
- Size 3.6 x1.5 mm²
- Gate and Clear signal
- Fast HV ramp for Clear
- Rad. hard proved (36 Mrad)

Wire-bonding

Readout Mode

- Rolling shutter mode
 - Read signals gate by gate
 - one gate combines 4 adjacent rows
 - Read-Clear cycle in ~100ns
 - Full integration time is 20µs (twice the revolution time of SuperKEKB)
 - Only 'activated' rows consume power
 - Low sensor power consumption
- Max. acceptable average occupancy <3%. otherwise,
 - ጳ data loss,
 - degrade tracking performance.

PXD DAQ Scheme

- ♦ PXD unfiltered data rate → 10x sum of other Belle II detectors
 - Therefor need separate readout path
 - Data reduction to 1/10 by HLT based ROI calculation from CDC and SVD track information
 - Feedback to PXD readout, selection of pixels within rectangular ROIs

ROI extrapolation on HLT

DHH: Data Handling Hub HLT: High Level Trigger FTSW: Frontend-Timing-SWitch ROI: Region Of Interest

Belle II PXD for early Phase 3

- ♦ 2 layers of DEPFET sensors @ r = 14(22) mm
- Sensitive area per module: L1: 12.5mm x 44.8mm, L2: 12.5mm x 61.44mm
- ♦ Sensor thickness: 75 µm, 0.21% X₀ per layer

Belle II PXD for early Phase 3

- Each ladder is formed by a pair of mirrored DEPFET sensors
- Due to problems in ladder gluing, only half of designed PXD (full L1+2 L2 ladders) was installed in 2018/2019, will be finalized in 2021.

Signal to Noise Ratio

- Low noise (<1ADU, <100e ENC)</p>
- ♦ Signal to Noise Ratio ≈ 50
- Most probable value and SNR uniform over ASIC combinations within one module.
- The inner modules feature more prominent contribution originated from low energy synchrotron radiation photons.

60

50

40

30

Compensation for Radiation Damage

- Defects of SiO₂ cause shift of threshold voltage.
- NIEL is not expected to be an issue.
- Module still functional after > 25 Mrad (corresponding to 250mrad/s for 10 smy)
- In Phase3 operation, voltages are regularly adjusted to have the source current of ~100mA.
 - Tune the internal amplification
 - Tune the coupling between internal gate and clear.

Synchrotron Radiation Background

- IR designed such that no direct SR photons hit the central Be beam pipe.
- Large SR background was observed for some runs in a few modules in -x direction.
 - Secondary photons single pixels, low energy (<10keV)</p>
 - Back scattering photons from direct synrad fan hitting +x edge of Ti beam pipe
 - photons which may be originated from synrad that backscatters further downstream
 - May cause inhomogeneous irradiation

Gated Mode Operation

- SuperKEKB is operated in top-up mode: continuous injection
 - At design luminosity Touschek effects limit beam life time to 10 mins
 - Accumulating integrated luminosity effectively.
- Freshly injected bunches produce high background
 - Damping time few ms
- Gated Mode can blind PXD when noisy bunches pass.
 - Newly created charges are not collected
 - Charges in internal gate are preserved

PXD Operation & Performance

Hit Efficiency

 $\lambda = \pi/2 - \theta$, angle between a track and the plane \perp to the beam.

The high radiation dose in the beam loss is a threat to the machine (collimator, final focus magnets) and pixel detector.

- Inoperable PXD module, recovered afterwards.
- Working point shifted.
- ♦ Increased number of inefficient rows (~2%). \rightarrow points to possible damages in Switcher

LER beam loss event

- 150mA beam current lost in 40 µs, estimated dose in PXD: ~ 5 Gy (0.5krad).
- Severely damaged vertical collimator
- Major quench of final focus magnet system
- Damage in PXD

PXD Operation & Performance

Hit Efficiency

- Radiation burst tolerance Study
 - Switchers and DEPFET matrix have been irradiated with a focused pencil beam of electrons (855 MeV) at MAMI, Mainz
 - A particular region of the Switchers where the voltage regulators is located, is found to be sensitive to the radiation bursts.
 - The dose is compatible with the estimate at the beam incidents.
- Improving the protection scheme
 - ♦ PXD: the scheme of fast emergency shutdown is prepared, O(100ms) -> O(100µs)
 - Machine side: faster abort logic , increase number of abort gaps (1->2), modify the collimator system.
- **DESY.** Commissioning and performance of Belle II pixel detector, H.Ye, HSTD12

VXD Performance

Transverse Impact Parameter Resolution

- Exploit small and flat transverse beam spot size in SuperKEKB
 - Use φ-dependence of track impact parameter (d₀) resolution to study beam profile
 - Use dimuon events to measure intrinsic d₀ resolution
- Unfold the beam profile: size consistent with expectations.

VXD Performance

Transverse Impact Parameter Resolution

Summary

- The first beam collision experience with the new pixel concept (DEPFET) and half of the full scaled detector has been achieved.
 - Challenging operating conditions close to the IP at a very ambitious machine like SuperKEKB
- PXD system has been continuously improved and optimized during the 2019 runs.
- Good PXD performance is demonstrated.
- Irradiation damage to PXD from beam loss events is under investigation.
 - SuperKEKB and Belle II need to minimize the probability and impact of major uncontrolled beam losses.
 - Protection scheme is being improved.

Backup

Ladder Gluing

De-scoped PXD was installed in 2018/2019,

- ◆ Due to relatively high failure rate in ladder gluing procedure → solved!
- Replacement with full PXD is scheduled in 2021.

Small ceramic inserts on the back side → reinforcement of the joint

Thermal Management

- The power consumption of full PXD is 420W,
 - 360W are contributed from DCD/DHP, which are located in the end of stave.
 - ➡ Active 2 phase CO2 cooling is required there.
 - Little power derived from matrix (0.5W per module) and Switchers (1W per module)
 - ➡ Forced N₂ cooling is sufficient in the sensitive area.

Thermal mock-up (half-shell)

Temperature along the PXD ladder

PXD Layout

Module Calibration

- Optimization of ASIC and DEPFET parameters, e.g.
 - DHP input delay elements
 - DCD internal current source
 - charge collection
- Narrow and stable pedestals
- Low noise (<1ADU, <100e ENC)</p>

