Belle II Pixel Detector

Commissioning and Performance

Hua Ye
On behalf of Belle II PXD - DEPFET Collaboration

HSTD12, Dec.14-18, 2019, Hiroshima
SuperKEKB delivers e^+e^- collisions at 10.58 GeV ($M_{Y(4S)}$), with a target peak luminosity of $8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$, 40 times larger than that of KEKB.

- Increase beam currents twice
- Reduce vertical beam spot size by a factor of 20

Belle II detector has accomplished a series of upgrades to

- Improve the overall performance
- Cope with the increased background and high trigger rate.

Aim to accumulate a dataset of 50 ab$^{-1}$ by ~2027, to study flavour physics and explore new physics beyond the standard model.
Highlights of Belle II Status

❖ Collisions started in Spring 2018, “Phase 2”.
 ❖ Mainly for beam commissioning,
 ❖ with a dedicated vertex detector to study beam background.
❖ 0.5 fb\(^{-1}\) data recorded.

❖ Physics data taking has started in March 2019, “Phase 3”.
 ❖ With Belle II VXD
 ❖ 10 fb\(^{-1}\) data recorded.
 ❖ Aim to collect 200 fb\(^{-1}\) by summer 2020.

❖ On Dec.3, Belle II achieved to record data at luminosities in excess of 10\(^{34}\) cm\(^{-2}\)s\(^{-1}\) (KEKB design luminosity)
DEPFET PXD for Belle II

Depleted P-channel Field-Effect Transistor (DEPFET) combines detection and amplification within one device.

Each pixel is a p-channel FET on top of fully depleted silicon bulk

- Fast charge collection (~ns)
- Charges collected in the “internal gate”
- Readout of modulated drain current
 - internal amplification
 \[
 g_q = \frac{\partial I}{\partial q} \approx 500 \frac{pA}{e^-}
 \]
- High Signal to Noise Ratio (SNR)
- Periodical clearing of “internal gate” required to reset the pixel
PXD Module Concept

- Pixel size: varies in z direction, 50 x 55-85 µm²
 - optimized to have the best resolution in forward direction around 45° incident angle
- 250 x 768 pixels per module
- By thinning the active sensor thickness can be reduced to as little as 50 µm.
- For optimal position resolution (COG) 75µm were chosen for PXD
- 3 Metal layers for circuitry
 - 2Al + 1Cu
- Mechanically self-supporting device
ASICs

DCD: Drain Current Digitizer,
- UMC 180 nm
- 256 input channels
- Pipeline 8-bit ADC per channel
- 92 ns sampling time
- Rad. hard proved (10 Mrad)

DHP: Data Handling Processor
- TSMC 65 nm
- Size 4.0 x 3.2 mm²
- Common mode and pedestal correction
- Data reduction (zero suppression)
- Timing and trigger control
- Transmit 1.6 Gbit/s of data over a 15 m cable to the backend.
- Rad. Hard proved (100 Mrad)

Switcher: Row control
- AMS/IBM HVCMOS 180 nm
- Size 3.6 x 1.5 mm²
- Gate and Clear signal
- Fast HV ramp for Clear
- Rad. hard proved (36 Mrad)
Readout Mode

- Rolling shutter mode
 - Read signals gate by gate
 - one gate combines 4 adjacent rows
 - Read-Clear cycle in ~100ns
 - Full integration time is 20μs (twice the revolution time of SuperKEKB)
- Only ‘activated’ rows consume power
 - Low sensor power consumption
- Max. acceptable average occupancy <3%. otherwise,
 - data loss,
 - degrade tracking performance.
PXD DAQ Scheme

- PXD unfiltered data rate \rightarrow 10x sum of other Belle II detectors
- Therefore need separate readout path
- Data reduction to 1/10 by HLT based ROI calculation from CDC and SVD track information
- Feedback to PXD readout, selection of pixels within rectangular ROIs

Diagram Notes:
- DHH: Data Handling Hub
- HLT: High Level Trigger
- FTSW: Frontend-Timing-SWitch
- ROI: Region Of Interest
Belle II PXD for early Phase 3

- 2 layers of DEPFET sensors @ r = 14(22) mm
- Sensitive area per module: L1: 12.5mm x 44.8mm, L2: 12.5mm x 61.44mm
- Sensor thickness: 75 µm, 0.21% X₀ per layer
Belle II PXD for early Phase 3

❖ Each ladder is formed by a pair of mirrored DEPFET sensors
❖ Due to problems in ladder gluing, only half of designed PXD (full L1+2 L2 ladders) was installed in 2018/2019, will be finalized in 2021.
Signal to Noise Ratio

- Low noise (<1ADU, <100e ENC)
- Signal to Noise Ratio ≈ 50
- Most probable value and SNR uniform over ASIC combinations within one module.
- The inner modules feature more prominent contribution originated from low energy synchrotron radiation photons.
Compensation for Radiation Damage

- Defects of SiO$_2$ cause shift of threshold voltage.
- NIEL is not expected to be an issue.
- Module still functional after >25 Mrad (corresponding to 250mrad/s for 10 smy)
- In Phase3 operation, voltages are regularly adjusted to have the source current of ~100mA.
 - Tune the internal amplification
 - Tune the coupling between internal gate and clear.

\[(V_{gs} - V_{Thr}) \propto \sqrt{I_D} \propto g_q \propto MPV \]

2019 (Preliminary)
Synchrotron Radiation Background

- IR designed such that no direct SR photons hit the central Be beam pipe.
- Large SR background was observed for some runs in a few modules in -x direction.
 - Secondary photons — single pixels, low energy (<10keV)
 - Back scattering photons from direct synrad fan hitting +x edge of Ti beam pipe
 - photons which may be originated from synrad that backscatters further downstream
 - May cause inhomogeneous irradiation
Gated Mode Operation

- SuperKEKB is operated in top-up mode: continuous injection
 - At design luminosity Touschek effects limit beam lifetime to 10 mins
 - Accumulating integrated luminosity effectively.
- Freshly injected bunches produce high background
 - Damping time few ms
- Gated Mode can blind PXD when noisy bunches pass.
 - Newly created charges are not collected
 - Charges in internal gate are preserved

DEPFET Gated Mode

- Real clear
 - Clear voltage high
 - Gate voltage low
- Suppressed clear
 - Clear voltage high
 - Gate voltage high
- Clear contact
- External gate
- Internal gate

SuperKEKB bunch pattern

- 2 bunches, 25 Hz
- LER
-Injected bunches 100 ns apart
- Revolution time = 10 μs
- 3 km circumf.

Graph: Mean number of hits vs. time interval

- Without Gated Mode
- With Gated Mode
The high radiation dose in the beam loss is a threat to the machine (collimator, final focus magnets) and pixel detector.
- Inoperable PXD module, recovered afterwards.
- Working point shifted.
- Increased number of inefficient rows (~2%). → points to possible damages in Switcher

LER beam loss event
- 150mA beam current lost in 40 μs, estimated dose in PXD: ~ 5 Gy (0.5 krad).
- Severely damaged vertical collimator
- Major quench of final focus magnet system
- Damage in PXD

\[\lambda = \pi/2 - \theta, \text{ angle between a track and the plane } \perp \text{ to the beam.} \]
PXD Operation & Performance

Hit Efficiency

- Radiation burst tolerance Study
 - Switchers and DEPFET matrix have been irradiated with a focused pencil beam of electrons (855 MeV) at MAMI, Mainz
 - A particular region of the Switchers where the voltage regulators is located, is found to be sensitive to the radiation bursts.
 - The dose is compatible with the estimate at the beam incidents.

- Improving the protection scheme
 - PXD: the scheme of fast emergency shutdown is prepared, \(O(100\text{ms}) \rightarrow O(100\mu\text{s})\)
 - Machine side: faster abort logic, increase number of abort gaps (1->2), modify the collimator system.
VXD Performance

Transverse Impact Parameter Resolution

- Exploit small and flat transverse beam spot size in SuperKEKB
 - Use ϕ-dependence of track impact parameter (d_0) resolution to study beam profile
 - Use dimuon events to measure intrinsic d_0 resolution
 - Unfold the beam profile: size consistent with expectations.

Data: $\sigma_i = 14.1 \pm 0.1 \mu m$
MC: $\sigma_i = 12.5 \pm 0.1 \mu m$

$$\sqrt{\sigma_x \sin \phi_0}^2 + \sqrt{\sigma_y \cos \phi_0}^2$$
VXD Performance

Transverse Impact Parameter Resolution

- Exploit small and flat transverse beam spot size in SuperKEKB
- Use ϕ-dependence of track impact parameter (d_0) resolution to study beam profile
- Use dimuon events to measure intrinsic d_0 resolution
- Unfold the beam profile: size consistent with expectations.

$\tau_{\text{measure}} = (370 \pm 40) \text{ fs}$
$\tau_{\text{PDG}} = (410.1 \pm 1.5) \text{ fs}$

Data: $\sigma_i = 14.1 \pm 0.1 \mu m$
MC: $\sigma_i = 12.5 \pm 0.1 \mu m$
Summary

❖ The first beam collision experience with the new pixel concept (DEPFET) and half of the full scaled detector has been achieved.

❖ Challenging operating conditions close to the IP at a very ambitious machine like SuperKEKB

❖ PXD system has been continuously improved and optimized during the 2019 runs.

❖ Good PXD performance is demonstrated.

❖ Irradiation damage to PXD from beam loss events is under investigation.

 ❖ SuperKEKB and Belle II need to minimize the probability and impact of major uncontrolled beam losses.

 ❖ Protection scheme is being improved.
Backup
Ladder Gluing

- De-scoped PXD was installed in 2018/2019,
 - Due to relatively high failure rate in ladder gluing procedure → solved!
- Replacement with full PXD is scheduled in 2021.

Improved ladder gluing scheme

Small ceramic inserts on the back side
→ reinforcement of the joint
Thermal Management

- The power consumption of full PXD is 420W,
 - 360W are contributed from DCD/DHP, which are located in the end of stave.
 - Active 2 phase CO2 cooling is required there.
 - Little power derived from matrix (0.5W per module) and Switchers (1W per module)
 - Forced N$_2$ cooling is sufficient in the sensitive area.

Thermal mock-up (half-shell)

Temperature along the PXD ladder
PXD Layout

Data Readout Chain
- DEPFET
- DCD
- DHP
- DHH
- ONSEN
- Belle II DAQ

Module control
- DCD
- Switcher
- DHH
- DHP
- PS
- Slow Control GUI

inside detector
- Optical transmitter
- Dock Box
- Ethernet cable
- Infiniband cable
- Power cable
- Camera link cable

outside detector
- Data Handling Hub (DHH)
- LMU PS
- DAQ, data reduction
- ROI selection
- FTSW, clock, trigger
- Slow control

Kapton flex
- ~ 0.5 m
- ~ 2 m
- ~ 15 m
- 250 x 768 pixel
- 1024 x 1024 pixel
- 192 gates
- 192 rows
- 1024 drains
- 192 columns

HEP pixel detector

DES Y. Commissioning and performance of Belle II pixel detector, H.Ye, HSTD12
Module Calibration

- Optimization of ASIC and DEPFET parameters, e.g.
 - DHP input delay elements
 - DCD internal current source
 - charge collection
- Narrow and stable pedestals
- Low noise (<1ADU, <100e ENC)

ADC Transfer Curve

- non-linearity

Pedestal Distribution - DCD0
- ACMC: On/On/On/On
- Offset: On/On/On/On

Gate-Off 1/2/3 (mV): -3920 / -3920
- max = 163
- min = 3

Noise Distribution - DCD0
- ACMC: On/On/On/On
- Offset: On/On/On/On

Noise of 200 frames - pxdr Mapping - W32_IF
- Gate-Off 1/2/3 (mV): -3520 / -3520 / -3520
- VIn/sub: 44 / 46 / 43 / 46

pdx9 Mapping - W02_8B
- Gate-Off 1/2/3 (mV): -3200 / -3200 / -3200
- VIn/sub: 39 / 38 / 35 / 35
- Masked pixel: 0

ADC Transfer Curve

- non-linearity