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Physics goals of CEPC 

 Circular Electron-Positron Collider (90, 160, 250 GeV) 

─ Higgs factory (106 Higgs) 

─ Precision study of Higgs, similar & complementary to ILC 

─ Looking for hints of new physics 

─ Z & W factory (1010 Z0) 

─ Precision test of SM 

─ Rare decays 

─ Flavor factory: b, c and QCD studies 

Conceptual Design Report available at http://cepc.ihep.ac.cn/ 
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Two Detector Concepts 

 Baseline detector concept 

 either Silicon tracker + TPC or 

Full Silicon Tracker 

 High granular calorimetry system 

 3 Tesla solenoid 

 Muon detector 

 Alternative detector concept, IDEA 

 Silicon pixel + Drift Chamber 

 2 Tesla solenoid 

 Dual readout calorimeter 

 Muon chamber 
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Pixel Sensor Specifications 

 

Physics driven requirements  Running constraints  Sensor specifications 

σs.p.          Small pixel 

Material budget        Thinning 

    Air cooling                                     Low power 

r of Inner most layer                                  beam-related background   Fast readout 

      radiation damage    Radiation tolerance 

 

2.8 µm 
16 µm 

50 µm 
0.15% X0 / layer 

50 mW / cm2 

16 mm 
 1 ~ 100 µs 

3.4 Mrad / year 
6.21012neq / (cm

2 year)  

 Efficient tagging of heavy quarks (b/c) and τ leptons 

  impact parameter resolution 
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Readout: binary vs analog 

 Influential factors of spatial resolution 

 Pixel pitch ‘p’ 

 Readout mode and charge sharing region ‘s’ 

x 

Pixel 0 Pixel 0 Pixel 0 

Pixel 1 Pixel 1 Pixel 1 

x 
0     p/2     p 0     p/2     p 0     p/2     p 

Signals in two adjacent pixels as function of the impact position x 

Binary readout without 
charge sharing 

 

𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑝/ 12 

Binary readout with 
charge sharing 

 

𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑠/ 12,  
inside the s region 

 

𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = （𝑝 − 𝑠）/ 12,  

outside the s region 

Analog readout 
 

𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
𝑠

𝑆/𝑁
 

inside the s region 
 

𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = （𝑝 − 𝑠）/ 12,  

outside the s region 
 

x x 

x x 

s s charge sharing 
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Readout: binary vs analog 

 Binary readout with charge sharing 

 𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
𝑝/2

12
, when s = p/2. 

 16um < p <20um required for CEPC 

x 

Pixel 0 Pixel 0 Pixel 0 

Pixel 1 Pixel 1 Pixel 1 

x 
0     p/2     p 0     p/2     p 0     p/2     p 

Signals in two adjacent pixels as function of the impact position x 

Binary readout without 
charge sharing 

 

𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑝/ 12 

Binary readout with 
charge sharing 

 

𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑠/ 12,  
inside the s region 

 

𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = （𝑝 − 𝑠）/ 12,  

outside the s region 

Analog readout 
 

𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
𝑠

𝑆/𝑁
 

inside the s region 
 

𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = （𝑝 − 𝑠）/ 12,  

outside the s region 
 

x x 

x x 

s s charge sharing 
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Discriminator: in-pixel vs end-of-column 

 In-pixel discriminator is enabled by deep sub-micron process 

 Chosen for the CEPC R&Ds  

 Benefits of in-pixel discriminator 

 Reduced power to transmit bits of ‘Hit’ out of matrix 

p= 𝐶𝑉2 ∗ 𝐻𝑖𝑡_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 0.2 mW/cm2, assumed 1 cm column line 

 Decreased digital settling time, a few to 10 ns 

 End-of-column discriminator for comparison 

 Consume power to sustain the DC current I0 

 Settling time ∆𝑡 increases with the improvement of ∆𝑉 

 

 

 

∆𝑡 =
𝐶(𝑉𝐺𝑆

 
−  𝑉𝑡ℎ)

2𝐼0

ln
2 𝑉𝐺𝑆 −  

V𝑡ℎ + ∆𝑉

∆𝑉
∙

𝑉𝑖𝑛

2 𝑉𝐺𝑆 − 𝑉𝑡ℎ + 𝑉𝑖𝑛
= 31 𝑛𝑠 

𝑎𝑠𝑠𝑢𝑚𝑒 𝑉𝐺𝑆
 
−  Vth = 100 mV, 𝑉𝑖𝑛 = 100 𝑚V, ∆𝑉 = 3 𝑚𝑉 

            while I0 = 10 𝜇𝐴, 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 11 𝑚𝑊/𝑐𝑚2 

column 
line 

C 

I0 

Vin 

∆𝑉 

∆𝑡 
Vout 

A source follower to drive the column line 
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 Step 1: optimized separately either for spatial resolution or for 

readout speed; 

 CPV1/2/3 and JadePix1/2/3 

 MIC4 and TaichuPix1 

 Step 2: combine the two parts with advanced technologies 

 3D-SOI is being pursuing 

R&D activities on pixel sensors 

Fine pitch  
Low power 
frontend 

Fast readout 
 architecture 

Spatial resolution 
thinning 

Analog power 

Readout speed 
Digital power 

+ 

JadePix1/2/3 
(CMOS) 

CPV1/2/3 
(SOI) 

MIC4 
(CMOS) 

3D-SOI 

TaichuPix1 
(CMOS) 
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 Step 1: optimized separately either for spatial resolution or for 

readout speed; 

 CPV1/2/3 and JadePix1/2/3 

 MIC4 and TaichuPix1 

 Step 2: combine the two parts with advanced technologies 

 3D-SOI is being pursuing 

R&D activities on pixel sensors 

Fine pitch  
Low power 
frontend 

Fast readout 
 architecture 

Spatial resolution 
thinning 

Analog power 

Readout speed 
Digital power 

+ 

JadePix1/2/3 
(CMOS) 

CPV1/2/3 
(SOI) 

MIC4 
(CMOS) 

3D-SOI 

TaichuPix1 
(CMOS) 

Zhigang Wu 
Poster #20 

This talk Ying Zhang 
Poster #23 

Yang Zhou 
Poster #21 
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Fixing the S/N for a given bandwidth  

a = 2 in strong inversion  
a = 1 in  weak inversion 

CMOS Pixel Sensor (CPS) 

 TowerJazz CIS 0.18 μm process 

 Quadruple well process 

 Thick (~20 μm) epitaxial layer  

 with high resistivity (≥1 kΩ•cm) 

 Very small Cdiode ~ a few fF 
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Sensing diode verified on JadePix1 

 Sensing diode characterized on JadePix1 

 Cdiode = 4.8 fF ~ 7.7 fF with maximum Vdiode = 1.8V 

 Essential to increase the bias voltage via Vsub 

 Electrode size = 4 um2， Footprint = 36 um2 chosen for JadePix3 

 Comprehensive considerations on the layout area, diode capacitance, and charge 
collection efficiency 

 Vsub biased negatively 

   Q/C measured on JadePix1 

Ref: L.J.Chen, et al, RDTM (2019) 
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Front-end verified on MIC4 

OUT_A waveform measured on MIC4 Peaking time and pulse duration  

 MIC4: an ALPIDE structure optimized for fast timing 

 Peaking time < 1us 

 Pulse duration < 3us 

 Increased power to 110nW/pixel 

 Measurement results: 

 Applied threshold = 99 e- 

 TN = 6 e-, FPN = 31 e- (< 20e- is required) 

HSTD12_Yunpeng_JadePix3 13 



JadePix3: Diode & Front-end design 

 Design goals: small pixel size and low power consumption  

 Sensing diode: negatively biased for high Q/C 

 Electrode size 4 µm2, with a small footprint 36 µm2 

 Frontend: tradeoff between layout area and FPN 

 Reduction on the layout area, ~200 µm2 

 Improvement on the FPN = 3.1e- (simulation) 

 A low power version (20nA), equivalent to 9 mW/cm2 
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Threshold dispersion by MC simulation 
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JadePix3: Customized D-FlipFlop 

 D-FlipFlop (DFF) used to register the ‘Hit’ from the discriminator 

 Set to 1 by the leading (falling) edge of discriminated pulse 

 Reset to 0 by the shared row line 

 Enhanced to drive the column line (capacitive) 

 Customized design to reduce the layout area 

DFF customized: 
~6*6 um2 

DFF in the digital lib: 
~16*6 um2 
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JadePix3: Rolling shutter readout of matrix 

 In-pixel circuit 

 Low power binary front-end 

 Optimized DFF 

 Rolling shutter readout 

 512 row * 192 col. 

 One row selected at a time 

 102 us to finish 512 rows 

 Every 48 columns fed into the Priority Encoder 

at the end of columns. 

 Minimum pixel size 16× 23.11 μm2 

 4 variants to investigate possible optimizations 

Sector Diode Front-end Pixel digital Pixel layout 

0 2 + 2 μm FE_V0 DGT_V0 16×26 μm2 

1 2 + 2 μm FE_V0 DGT_V1 16× 26 μm2 

2 2 + 2 μm FE_V0 DGT_V2 16× 23.11 μm2 

3 2 + 2 μm FE_V1 DGT_V0 16×26 μm2 
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JadePix3: Periphery data processing 

 Zero suppression at the end of column 

 Each 48 columns divided into 16 blocks  

 ‘Fired’ blocks identified sequentially by 

a 4-bit priority encoder 

 12.5 ns * 16 blocks = 200 ns/row 

 Only hit information fed into FIFO 

        Row #                    Block #     hits in block 

 

 FIFO R/W clk: 80 MHz 

 FIFO depth: 48 

 Data stream steered by a Finite State Machine 

 Data after 8b/10b: 800 Mbit/s 

 Estimated Power consumption 76mW 

 15mW (Zero suppression), 25mW (Serializer), 20mW (PLL), 16mW (LVDS) 

 

Priority encoder 

1 16

1

2

3

1 2 3 4

Multiplexer

FSM

8b/10b

FIFO FIFO FIFO FIFO

Serializer

LVDS

PLL

16bit 16bit 16bit 16bit

8bit 8bit 8bit 8bit

8bit

400 Mhz

80 Mhz

W/R CLK

Hit Reset Hit Reset Hit Reset Hit Reset

Cache

9 bit Row Addr.

Sensor Out

Zero Suppression

Matrix

Priority encoder Priority encoder Priority encoder 
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JadePix3: Status  

 Submitted in Oct. 2019 

 10.4mm * 6.1 mm 

 Minimum pixel size 16× 23.11 μm2 

 Rolling shutter readout 102 us/frame 

 Estimated power consumption ~ 55 mW/cm2 

 9mW/cm2 (Pixel)  

 30mW/cm2 (Zero suppression) 

 6.25mW/cm2 (Serializer) 

 5mW/cm2 (PLL) 

 4mW/cm2 (LVDS) 

 

 

6.1 mm 

1
0
.4

m
m
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Perspectives on SOI-3D 

 SOI-3D has been demonstrated by the SOFIST 3D chip for the ILC 

 

 The lower tier can be either SOI or CMOS pixel sensor 

 3D integration can be greatly simplified by using SOI as the upper tier  

 Etching of through via 

 Removal of handle wafer 

 IHEP group is to explore the potential of SOI-3D 

Ref:  M. Yamada, IEEE 3DIC, Oct. 8th, Sendai, Japan, 2019 
& the talk by Toru Tsuboyama at the symposium. 
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Summary 

 High resolution low power CMOS sensor is in development for 

the CEPC vertex 

 Minimum pixel size 16× 23.11 μm2 

 Estimated power consumption ~ 55 mW/cm2 

 Rolling shutter readout 102 us/frame 

 SOI-3D may bring about new design space in terms of 

shrinking the pixel size. 
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IHEP: Yunpeng Lu, Ying Zhang, Yang Zhou, Zhigang Wu, Qun OuYang 
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Thank you for your time! 
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 Backup slides 
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CEPC and Its Beam Timing 

 Continuous colliding mode 

 Duty cycle ~ 50% @ Higgs, close to 100% @ W/Z 

 General requirements on the detector development: 

 Precise measurement, Low power, Fast readout, Radiation-hard 

Higgs W Z (3T) Z (2T) 

Center-of-mass energy (GeV) 240 160 91 

Number of IPs 2 

Luminosity/IP (1034 cm-2 s-1) 3 10 16 32 

Number of years 7 1 2 

Total Integrated Luminosity (ab-1) -
2 IP 

5.6 2.6 8 16 

Total number of particles 1×106 2×107 3×1011 7×1011 

Bunch numbers  
(Bunch spacing) 

242  
(680 ns) 

1524  
(210 ns) 

12000 
(25ns + 10% gap) 
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Baseline Silicon Tracker Layout 

 Vertex part: 6 pixel layers in double-sided way 

 Layer 1: best s.p. resolution 

 Layer 2: very fast readout  

 Tracking part: microstrip + pixel 

 SIT, SET, ETD, and 3 outer disks of FTD, ETD: 
single-sided strips mounted back to back 

 2 inner disks of FTD: pixel 
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Beam-Induced Backgrounds (CDR) 

 Detector occupancy  <1% 

 assuming 10 μs readout interval, 16 um pixel pitch with a multiplicity of 9 
per hit 

Occupancy at the first vertex layer 

Radiation level at the first vertex layer 
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