12th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD12), 14-18 Dec. 2019, Hiroshima, Japan

Development of high resolution low power CMOS pixel sensor for the CEPC vertex detector

Yunpeng Lu

On behalf of the JadePix3 design team

Dec. 16, 2019

Outline

- Introduction
 - CEPC and its Vertex detector
- Key design choices
 - Readout: binary vs analog
 - Discriminator: In-pixel vs end-of-column
- R&D activities
- Design of JadePix3
 - Diode
 - Front-end
 - Readout architecture
- Outlook on further development
 - Vertical integration with SOI-3D

Physics goals of CEPC

- Circular Electron-Positron Collider (90, 160, 250 GeV)
 - Higgs factory (10⁶ Higgs)
 - Precision study of Higgs, similar & complementary to ILC
 - Looking for hints of new physics
 - Z & W factory (10¹⁰ Z⁰)
 - Precision test of SM
 - Rare decays
 - Flavor factory: b, c and QCD studies

Two Detector Concepts

- Baseline detector concept
 - either Silicon tracker + TPC or
 Full Silicon Tracker
 - High granular calorimetry system
 - 3 Tesla solenoid
 - Muon detector

- Alternative detector concept, IDEA
 - Silicon pixel + Drift Chamber
 - 2 Tesla solenoid
 - Dual readout calorimeter
 - Muon chamber

Pixel Sensor Specifications

• Efficient tagging of heavy quarks (b/c) and τ leptons

 \rightarrow impact parameter resolution

$$\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)\sin^{3/2}\theta} (\mu m)$$

Readout: binary vs analog

- Influential factors of spatial resolution
 - Pixel pitch 'p'
 - Readout mode and charge sharing region 's'

Signals in two adjacent pixels as function of the impact position x

Readout: binary vs analog

- Binary readout with charge sharing
 - $\sigma_{position} = \frac{p/2}{\sqrt{12}}$, when s = p/2.
 - 16um < p <20um required for CEPC

Signals in two adjacent pixels as function of the impact position \boldsymbol{x}

HSTD12 Yunpeng JadePix3

Discriminator: in-pixel vs end-of-column

- In-pixel discriminator is enabled by deep sub-micron process
 - Chosen for the CEPC R&Ds
- Benefits of in-pixel discriminator
 - Reduced power to transmit bits of 'Hit' out of matrix

 $p = CV^2 * Hit_density = 0.2 \text{ mW/cm}^2$, assumed 1 cm column line

- Decreased digital settling time, a few to 10 ns
- End-of-column discriminator for comparison

R&D activities on pixel sensors

- Step 1: optimized separately either for spatial resolution or for readout speed;
 - CPV1/2/3 and JadePix1/2/3
 - MIC4 and TaichuPix1
- Step 2: combine the two parts with advanced technologies
 - 3D-SOI is being pursuing

R&D activities on pixel sensors

- Step 1: optimized separately either for spatial resolution or for readout speed;
 - CPV1/2/3 and JadePix1/2/3
 - MIC4 and TaichuPix1
- Step 2: combine the two parts with advanced technologies
 - 3D-SOI is being pursuing

CMOS Pixel Sensor (CPS)

- TowerJazz CIS 0.18 µm process
- Quadruple well process
- Thick (~20 μm) epitaxial layer
- with high resistivity ($\geq 1 \text{ k}\Omega \cdot \text{cm}$)
- Very small C_{diode} ~ a few fF

Fixing the S/N for a given bandwidth

Sensing diode verified on JadePix1

- Sensing diode characterized on JadePix1
 - $C_{diode} = 4.8 \text{ fF} \sim 7.7 \text{ fF}$ with maximum Vdiode = 1.8V
 - Essential to increase the bias voltage via V_{sub}
- Electrode size = 4 um^2 , Footprint = 36 um^2 chosen for JadePix3
 - Comprehensive considerations on the layout area, diode capacitance, and charge collection efficiency
 - V_{sub} biased negatively

Front-end verified on MIC4

- MIC4: an ALPIDE structure optimized for fast timing
 - Peaking time < 1us
 - Pulse duration < 3us
 - Increased power to 110nW/pixel
- Measurement results:
 - Applied threshold = 99 e-
 - TN = 6 e⁻, FPN = 31 e⁻ (< 20e⁻ is required)

JadePix3: Diode & Front-end design

Footprint

16 µm

Electrode

- Design goals: small pixel size and low power consumption
- Sensing diode: negatively biased for high Q/C
 - Electrode size 4 μ m², with a small footprint 36 μ m²
- Frontend: tradeoff between layout area and FPN
 - Reduction on the layout area, ~200 μm²

JadePix3: Customized D-FlipFlop

- D-FlipFlop (DFF) used to register the 'Hit' from the discriminator
 - Set to 1 by the leading (falling) edge of discriminated pulse
 - Reset to 0 by the shared row line
 - Enhanced to drive the column line (capacitive)
 - Customized design to reduce the layout area

JadePix3: Rolling shutter readout of matrix

row n

pixe row n+1

address decode

Ň

- In-pixel circuit
 - Low power binary front-end
 - Optimized DFF
- Rolling shutter readout
 - 512 row * 192 col.
 - One row selected at a time
 - 102 us to finish 512 rows
 - Every 48 columns fed into the Priority Encoder at the end of columns.
 - Minimum pixel size 16× 23.11 µm²
 - 4 variants to investigate possible optimizations

Sector	Diode	Front-end	Pixel digital	Pixel layout
0	$2+2\ \mu m$	FE_V0	DGT_V0	16×26 μm ²
1	$2+2\ \mu m$	FE_V0	DGT_V1	16× 26 μm ²
2	$2+2\ \mu m$	FE_V0	DGT_V2	16× 23.11 μm ²
3	$2+2\ \mu m$	FE_V1	DGT_V0	16×26 μm ²

HSTD12 Yunpeng JadePix3

JadePix3: Periphery data processing

JadePix3: Status

Perspectives on SOI-3D

SOI-3D has been demonstrated by the SOFIST 3D chip for the ILC Ref: M. Yamada, IEEE 3DIC, Oct. 8th, Sendai, Japan, 2019

& the talk by Toru Tsuboyama at the symposium.

- The lower tier can be either SOI or CMOS pixel sensor
- 3D integration can be greatly simplified by using SOI as the upper tier
 - Etching of through via
 - Removal of handle wafer
- IHEP group is to explore the potential of SOI-3D

Summary

- High resolution low power CMOS sensor is in development for the CEPC vertex
 - Minimum pixel size $16 \times 23.11 \ \mu m^2$
 - Estimated power consumption ~ 55 mW/cm²
 - Rolling shutter readout 102 us/frame
- SOI-3D may bring about new design space in terms of shrinking the pixel size.

JadePix3 design team

IHEP: Yunpeng Lu, Ying Zhang, Yang Zhou, Zhigang Wu, Qun OuYang
CCNU: Yang Ping, Weiping Ren, Le Xiao, Di Guo, Chenxing Meng, Anyang Xu, Xiangming Sun

Dalian Minzu Unv: Zhan Shi

SDU: Liang Zhang

Thank you for your time!

Acknowledgements

This work was supported partially by

- the National Key Program for S&T Research and Development (2016YFA0400400, 2016YFE0100900)
- the National Natural Science Foundation of China (11605217)
- the CAS Center for Excellence in Particle Physics (CCEPP)

Backup slides

CEPC and Its Beam Timing

	Higgs	W	Z (3T)	Z (2T)
Center-of-mass energy (GeV)	240	160	91	
Number of IPs	2			
Luminosity/IP (10^{34} cm ⁻² s ⁻¹)	3	10	16	32
Number of years	7	1	2	
Total Integrated Luminosity (ab ⁻¹) - 2 IP	5.6	2.6	8	16
Total number of particles	1×10^{6}	2×10 ⁷	3×10 ¹¹	7×10^{11}
Bunch numbers (Bunch spacing)	242 (680 ns)	1524 (210 ns)	12000 (25ns + 10% gap)	

- Continuous colliding mode
 - Duty cycle ~ 50% @ Higgs, close to 100% @ W/Z
- General requirements on the detector development:
 - Precise measurement, Low power, Fast readout, Radiation-hard

Baseline Silicon Tracker Layout

- Vertex part: 6 pixel layers in double-sided way
 - Layer 1: best s.p. resolution
 - Layer 2: very fast readout
- Tracking part: microstrip + pixel
 - SIT, SET, ETD, and 3 outer disks of FTD, ETD: single-sided strips mounted back to back
 - 2 inner disks of FTD: pixel

Design parameters for the Vertex

	R (mm)	z (mm)	$ \cos \theta $	$\sigma(\mu{\rm m})$
Layer 1	16	62.5	0.97	2.8
Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4

Developed CMOS Pixel Sensor prototypes for CEPC

Prototype	Pixel size (μm²)	Collection diode bias (V)	In-pixel circuit	R/O architecture	Main goals	Status
JadePix1	33 imes3316 $ imes$ 16	< 1.8	SF/amplifer, analog output	Rolling shutter	Sensor optimization	Lab. and beam test finished
JadePix2	22 × 22	< 10 V (ac- coupled)	amp., discriminator, binary output	Rolling shutter	Small pixel, Power < 100 mW/cm ²	Electrical functionality verified
MIC4	25 × 25	reverse bias	Low power front-end, address encoder	Data-driven, Asynchronous	Small pixel, fast readout	Electrical functionality verified
TaiChuPix1	25 × 25	reverse bias	Low power front-end, address encoder	Data-driven, Asynchronous	Small pixel, fast readout with time stamp	In measurement
JadePix3	16 imes 26 16 imes 23.11	reverse bias	Low power front-end, binary output	Rolling shutter with end of col. priority encoder	Small pixel, low power	In fabrication
JadeP 3.9 $ imes$	Pix1 (IHEP) 7.9 mm ²	JadePix2 3 $ imes$ 3.3 $ imes$	(IHEP)MIC4 (CC mm^2 3.2×3.7	NU & IHEP) TaiChuPix1 (I 7 mm ² NWPU, IFAE, $5 \times 5 mm^2$	HEP, SDU, Jade CCNU) Dali 10.4	ePix3(IHEP, CCNU, an Minzu Unv., SDU) ↓ × 6.1 mm²

All prototypes in TowerJazz 180 nm CIS process

Beam-Induced Backgrounds (CDR)

- Detector occupancy <1%
 - assuming 10 µs readout interval, 16 um pixel pitch with a multiplicity of 9 per hit

Radiation level at the first vertex layer				
	H (240)	W (160)	Z (91)	
Hit Density [hits/cm ² ·BX]	2.4	2.3	0.25	
TID [MRad/year]	0.93	2.9	3.4	
NIEL [10^{12} 1 MeV n_{eq} /cm ² ·year]	2.1	5.5	6.2	

Occupancy at the first vertex layer

	H(240)	W(160)	Z(91)
Hit density (hits $\cdot \text{ cm}^{-2} \cdot \text{BX}^{-1}$)	2.4	2.3	0.25
Bunching spacing (μs)	0.68	0.21	0.025
Occupancy (%)	0.08	0.25	0.23