Measurements and simulations of surface and bulk radiation damage effects in silicon detectors for phase II CMS outer tracker

V. Mariani(1),(1), Francesco Moscatelli(1,2), Daniele Passeri(1,3), Arianna Morozzi(1), Gian Mario Bilei(1,4), Alexander Dierlamm(4), Serena Mattiazzi(5), Thomas Bergauer(6), Marko Dragicevic(6), Viktoria Hinger(6)

on behalf of the CMS Collaboration

(1) INFN Perugia, Italy (2) CNR-IOM Perugia, Italy (3) Università degli Studi di Perugia, Italy (4) Karlsruhe Institute of Technology, Germany (5) Università and INFN Padova, Italy (6) Austrian Academy of Sciences, Austria

*e-mail: valentina.mariani@pg.infn.it

Introduction

- From 2026 the HL-LHC will start, with a very high fluence, up to 1×10^{15} MeV (2$ \times $1015) n/cm2 in the outer (inner) tracker. A new tracker detector will be installed in CMS.
- Two different Hamamatsu Photonics (HPK) sensor technologies have been investigated as support for the final choice: standard FZ290 and thinned FZth240.
- An intense activity on the Si/SiO$_2$ surface and bulk radiation damage effects have been carried out:
 - development of a surface radiation damage effects model based on [1];
 - measurements on the test structures before and after irradiations:
 - X-rays
 - X-rays and neutrons

In view of the upcoming OT tracker upgrade for the HL-LHC “New Perugia model” will start, with a very high fluence, up to 1 Mrad (SiO$_2$) expected in the outer tracker after 3000fb$^{-1}$

Conclusions

In view of the upcoming OT tracker upgrade for the HL-LHC an intense characterization of irradiated sensor started.

Sensors have been irradiated with X-rays before (50 krad - 70 Mrad(SiO$_2$)) and neutrons then (1.5×10^{14} – 1×10^{15} (1 MeV n/cm2)) to study the surface and the combined bulk + surface damage effects.

The new measurements on surface and bulk damages have been presented. Similar behavior between FZ290 and FZth240.

A model for the bulk and surface damages has been developed “New Perugia model” to provide a general radiation damage model. A further [1, 3] comparison between measurements and simulations confirms the validity of the model.

References