Commissioning of the upgraded ALICE

Inner Tracking System (ITS)

Svetlana Kushpil

Nuclear Physics Institute of the CAS Řež, Czech Republic

on behalf of the ALICE Collaboration

International Hiroshima Symposium on the Development and Application of Semiconductor Tracking Detectors 14-18 December 2019 International Conference Center Hiroshima

Upgraded Inner Tracking System (ITS2)

Motivations and goals

- Improved vertex and tracking precision first layer closer to IP, smaller pixels, less material
- Faster readout

	ITS 1	ITS2
layers	6	3 Inner Barrel (IB) 4 Outer Barrel (OB)
radius	39mm < r < 440mm	22mm < r < 400mm
η	$-1 \le \eta \le 1$	-1.3 ≤ η ≤ 1.3
X/X ₀ /layer	1.14%	0.35% (IB); 1% (OB)
rate capability	1kHz	100kHz (PbPb)

Based on MONOLITHIC ACTIVE PIXEL SENSOR (MAPS) ALPIDE

- 10 m² active silicon area (12.5 G-pixels)
- Spatial resolution $\sim 5x5 \ \mu m^2$ all layers
- Fake hit rate: $< 10^{-6}$ event $^{-1}$ pixel $^{-1}$
- Detection efficiency: > 99%

"Technical Design Report for the Upgrade of the ALICE Inner Tracking System" ALICE Collaboration, J.Phys. G41 (2014) 087002, CERN-LHCC-2013-024

ALPIDE: MONOLITHIC ACTIVE PIXEL SENSOR

1024 pixel columns

Chip size: 30 mm x 15 mm

Pixel pitch: 29 µm x 27 µm

50 µm (IB - Inner Barrel) 100 µm (OB - Outer Barrel)

844 mm (ML - Middle Layer) 1478 mm (OL - Outer Layer)

Chip thickness:

Length of stave:

Pixel Sensor produced using TowerJazz 180 nm CMOS Imaging Process

- Deep P-well allows in-pixel full CMOS (complex in-pixel circuitry without charge loss)
- Enables low-power read-out
- High granularity, low material budget
- Power: 40 mW/cm²
- Resistivity (>1 k Ω ·cm) p-type epitaxial layer (25 μ m)
- Possibility of reverse biasing (up to -6 V)

Svetlana Kushpil HSTD'12 15/12/2019

Expected radiation dose* : > 2700 krad Total Ionising Dose (TID),

 $> 1.7 \times 10^{13}$ 1MeV n _{eq} cm⁻² Non-Ionising Energy Loss (NIEL)

rows

12

LO

(* with safety factor)

3

ITS2 in numbers

- Pixel sensor chip: ~ 24000 (including spares)
- IB staves: 48
- OB Hybrid Integrated Circuits: 1692
- OB Staves: 90 (Outer Layer), 54 (Middle Layer)
- Readout Units: 192
- Large carbon composite structures: 24

The Hybrid Integrated Circuit (HIC) modules

Inner Barrel HIC

- Nine 50 µm-thick ALPIDE chips
- Aluminum Flexible Printed Circuit (FPC)
- Each chip read out separately
- Clock, control, data, power lines wire-bonded to FPC
- 27 cm length
- Hit density > 9.1 cm^{-2}

- Fourteen 100 µm-thick ALPIDE chips (2 rows)
- Data and control transferred through 1 master chip per row
- Chips wire-bonded to copper FPC
- Power delivered via 6 cross-cables soldered to FPC
- Hit density $< 2.8 \text{ cm}^{-2}$

Outer Barrel HIC Production

ASSEMBLED (2521) — DETECTOR GRADE (2142) …… 2500 HICs

Assembly Machine (MAM)

Criteria for acceptance:

Production completed!

- < 1% dead pixels
- no low impedance paths
- electrical interfaces (HSlink + DCTRL) functioning with in specifications

- Total number: 2592 ٠
- Detector-grade: 2180 ٠
- Global yield: 84% ٠
- Installed in OB: 1698 ٠

Outer Barrel Stave Production

Target OB Staves: 90 + 10 (OL), 54 + 6 (ML) (including spares)

Outer Barrel – (half-) Layer Assembly

Half-Barrel Assembly (a hierarchical Russian doll like assembly) All half-layers are first tested individually.

Layer and Barrel assembly

All components come to CERN

ALICE

The staves are **tested** at reception

validated after installation or sent to rework in case of problems

Inner Barrel assembly completed: fully functional

Middle half-layer

Outer half-barrel assembly completed

Maximum acceptable dead area per OB Stave: 1%

ITS upgrade - Component production status

Readout Unit (RU)

Power Boards

- 192 FPGA based RUs, operating in a mild radiation environment (< 10 krad TID & NIEL of 10¹¹ 1 MeV n en cm⁻²)
- Board production completed

Production & Test completed ! Everything is installed and cabled!

- CAEN powering modules available and in use in commissioning
- Services installed by the teams of Bari, Catania, CERN, COMSATS, Daresbury/Liverpool, Strasbourg

- All cables installed in lab on surface
- All Power Boards installed
- Service installation finished
- Final installation will be in ALICE cavern

Commissioning shifts

- Full commissioning of the detector on surface including cosmic muon data taking
- Aim is to obtain the detector performance before installation inside the cavern
- Quality control of the main systems and components
- Commissioning shifts 24/7
- Tests: threshold & the noise performance, long stability of parameters
- Monitoring: voltages / currents / temperatures

Inner Barrel Commissioning –Threshold Tuning

Adjustment of front-end parameters to equilibrate the charge thresholds

Achieving uniform response across the detector, verified on a spare IB half-layer

- 25

Very satisfying threshold stability over time

after tuning

after tuning (zoomed)

Svetlana Kushpil HSTD'12 15/12/2019

12

5 Threshold [DAC]

Inner Barrel Commissioning – Noise and Thresholds

Threshold is a trade-off between:

Detection efficiency :

Threshold < Charge Q_{MIP} (~225 e^{-})

Fake-hit rate :

Threshold >> Noise

Extremely quiet detector!

From tests performed on a spare IB layer, running the IB

at fake-hit rates below 10⁻¹⁰/pixel/event seems feasible

Svetlana Kushpil HSTD'12 15/12/2019

- We get around 1 cosmic track per minute
- We started analyzing "real" data
- Goals: study track and cluster parameters, alignment

Full inner half-barrel commissioning – Cosmics

• We get around 3 cosmic tracks per minute

Summary

- ALICE ITS Upgrade (ITS-2) is based on MAPS technology
- It will improve the ALICE potential performance
- Detector component production, assembly and connection to the services is completed
- Commissioning at the surface is ongoing, will be completed by April 2020
- The detector will be transferred to P2 from May 2020 and installed in ALICE in July 2020
- Installation in ALICE will be followed by commissioning period
- We plan the data taking in 2021
- A further upgrade of the fully-cylindrical ITS Inner Barrel for the LHC Long Shutdown 3 has been proposed and the R&D activities will start in 2020

2025+ ALICE ITS-3 Innermost layer: at R = 18 mm Thickness of each layer: $0.05\% X_0$

Svetlana Kushpil HSTD'12 15/12/2019

16

Back Up

ALICE ITS Upgrade

1) Overview

- ② Production of main components
 - Outer Barrel HIC and Stave Production
 - Readout Electronics
 - Power Boards
- **3** Detector Assembly
- Commissioning

ITS Upgrade: Construction Installation and Commissioning Timeline

- Module production: completed!
- Stave production: done
- Electronics production: done!

Assembly and Commissioning

OB Stave Assembly End : done

Installation

6-month Global Commissioning

Readout Unit

Inner Barrel Assembly

Stave

Outer Barrel Assembly

Global commissioning

Outer Barrel Commissioning

Example of threshold scan of one Outer Barrel Stave (~10⁸ pixels)

Power Supplies for detector and readout electronics

• Completely cabled and tested

