Indico has been upgraded to version 3.1. Details in the SSB

A 12-Channel 120-Gb/s Optical Receiver Array in a 55 nm CMOS technology for High-Energy Physics Experiments

Dec 14, 2019, 2:47 PM
POSTER - Sun: B1F-Meeting room#3, B2F-RAN1/2; Mon-Wed: B1F Meeting rooms #5-6 (International Conference Center Hiroshima)

POSTER - Sun: B1F-Meeting room#3, B2F-RAN1/2; Mon-Wed: B1F Meeting rooms #5-6

International Conference Center Hiroshima

Peace Memorial Park, Hiroshima-shi


Dr Chufeng Chen (Central China Normal University)


Optical data transmission, characterized by high data rate capacity, low power consumption and space saving, has been extensively used in the detector readout electronics in high-energy physics (HEP) experiments. The photodiode (PD)-based optical receiver array is a key component to build paralleled optical links at the receiving end. The light traveling through a fiber experiences optical power loss before reaching a photodiode. Each channel of an optical receiver array consists of a transimpedance amplifier (TIA) and a few limiting amplifier (LA) stages and aims at converting the small optical current in the photodiode to a voltage and further amplifying it.

This paper presents the design and measurements of a 12-channel 120-Gb/s optical receiver array ASIC fabricated in a standard 55-nm CMOS technology. A pseudo-differential CMOS push-pull TIA with resistive feedback is utilized to provide common-mode noise rejection and improve jitter performance. A novel three-order active feedback strategy is employed in five LA stages to expand the bandwidth and optimize the gain performance. The shared-inductor peaking and RC degeneration techniques are used to further improve the bandwidth. The single channel of the optical receiver array exhibits a total gain of 89.4 dBΩ with a bandwidth of 7.5 GHz.

The whole chip occupies 1.4 mm × 4 mm and consumes 672 mW with all 12 channels enabled. Wide-open eyes diagrams are recorded and a bit error rate (BER) of less than 1E-12 is achieved at 10 Gbps/ch. Random jitter (RJ) is 1.16 ps (RMS), deterministic jitter (DJ) is 10.1 ps (peak-to-peak) and total jitter is 26.8 ps. All channels demonstrate similar performance. The measurements indicate that we achieve our design goal.

Submission declaration Original and unpublished

Primary authors

Dr Hanhan Sun (Central China Normal University) Dr Le Xiao (Central China Normal University) Dr Cong Zhao (Central China Normal University) Dr Chufeng Chen (Central China Normal University) Prof. Guangming Huang (Central China Normal University, China)

Presentation materials

There are no materials yet.