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The Goal of LHCb is to discover new physics  through 
the precise measurements of CP-violation and rare 

decays using b (and c) hadrons.

For this IP, PV and SV resolutions are essential 



LHCb Upgrade

• LHCb upgrades to look for more 
collisions/s in order to select the 
most interesting ones. 

• Smart trigger algorithms to 

increase the yield of hadronic 
decays and more luminosity for 
rare decays.

• The LHCb Upgrade increases the 
luminosity (x5) and the readout 
rate (x40).

• This means more radiation 

damage, more occupancy, more 
data to transport.
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Overview of the Velo upgrade

• Innovative micro-channel 
cooling (-30 oC) also acting as 
the module substrate
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2x

52 modules, 40 Mpixels

Operates in Vacuum

VeloPix ASIC

Data driven readout @20 Gb/s

5.1 mm sensitive distance to 

beam.

Separated from the beam by 

a milled box at 3.5 mm

< 200 µm thin
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Sensor Development
• Requirements:

• Collect 6000 e-/MIP 

– 99% eff at 370 Mrad

~ 8 x 1015 1 MeV neq/cm2. 

this is equivalent to 5 years 

of LHCb Upgrade 50 fb-1

• The ATLAS IBL – at  550 fb-1 –

expects 3.3 x 1015 1 MeV neq/cm2

or 160 MRad.

• Timepix3 ASIC bonded to 

the prototypes

• TOT allows charge 

measurements.
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Non Uniform radiation exposure

Beam axis



Sensor Prototypes

• Prototyping round quite 
some variants: 

• Hamamatsu:
• n-on-p 200 µm thick

• 450 and 600 µm PTE

• 35 and 39 µm implant

• UBM

• Micron :
• n-on-n and n-on-p

• 36 µm implant

• 150, 250 and 450 µm PTE
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Hamamatsu

Micron



Testing prototypes with SPS beam
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• Using Timepix3 telescope

• 4 Timepix3 on 2 “arms”

• pointing resolution below 1.6 
µm

• Precise time stamps 
(1.56 ns) yield a clean 
Pat. Rec.

• 350 ps track time resolution

• JINST 14 (2019) no.05, P05026

• Poster #285: improved track 
time resolution from 350 ps to 
270 ps.

Picture of the Timepix3 telescope, at CERN SPS

DUT

Beam

Planes
Readout electronics



Collected Charge – neutron irradiated 

• Typical 

threshold of 

1000 e-.

• Even if the 

charge is 

shared up to 

6 pixels the 

signal would 

cross the 

threshold.

15 Dec 2019 – 12 HSTD 2019Kazu Akiba 10



Charge Multiplication – IRRAD
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• Heavily irradiated 
regions show higher 
charge collection at the 
same voltage.

• The  effect increases 
with the voltage.

• Still under analysis

LHCb Velo test beam 
preliminary



Temperature dependent  Breakdown

• Some sensors show   
early breakdown 
which is temperature 
dependent.  

• This effect seems 
slightly mitigated 
after some time 
biased.

• Operate at lower 
temperatures to gain 
radiation hardness?
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LHCb Velo
preliminary



Microchannels etched in silicon
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Silicon pre-tinning Alignment

Soldering
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Channel etching

Cap wafer bonding

Thinning (both sides)

Inlet/Outlet etching

Final assembly can 

Withstand 200 bar

Complex engineering feat – full description on poster #299 



boiling CO2 cooling
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Module Production
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Mechanical 
construction

Three modules in SPS test beam

Precision tile 
placement to 

10 μm

Flex circuit 
placement

wire bonding and 
HV/LV/data cable 

attachment



Gbtx problems 

• Non-flatness of the PCB 

leads to imperfect 

bump-bonding of GBTx

• Thermal stress causes 

some bonds to 

disconnect at -32oC

• Reflowing the PCBs 

improves the situation, 

but does not solve it

• Redesigned the layer 

stack-up of the PCB + 

new via technology

• Use a jig to keep PCB 

at while bonding GBTx
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• prototype modules loose 
communication when 
cooled.

• GBTx cannot re-lock if clock is 
lost below -10oC

• Increasing the operating 
current increases probability 
to successfully lock onto 
clock.

• Required to increase the 
charge-pump current in the 
phase control of the VCO.

• Default: 1.5µA 
Set: 5.625µA

Climate chamber used for the tests



Preparations for upgrade II
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2032 2033 2034 2035 2036 20402031

Run 5 Run 6

LS4

LHCb Upgrade II

LS5

LHCb Upgrade II 
Run 4 and Run 5
2030 ++
Accumulate 
250-350 fb-1

L = 1.5 x 1034
Lint ~ 300 fb-1

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

Run 3 Run 4Run 2

E
Y

E
TS LS2

Injector upgrades

LS3
HL-LHC Installation, ATLAS/CMS 

Phase 2 upgrades

LHCb Upgrade I
LHCb Upgrade I 

Installation startsLHCb

LHCb Upgrade I(b): Incremental

improvements/prototype detectors
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LHC parameters for Upgrade II
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Baseline (nominal) beam parameters and levelling at IP1&5

• Range of potential solutions to operate LHCb Upgrade II at up to 1.5x1034 cm-2s-1

• Horizontal and vertical crossing angle scenarios under consideration

• Number of colliding bunches at IP8: 2572

• Levelling by parallel separation at IP8

• reduction of yearly integrated luminosity at IP1&IP5 - 1% - 2.5%

Pile up ≈ 60

𝜎𝑡
𝑅𝑀𝑆 ≈ 186 ps

𝜎𝑧
𝑅𝑀𝑆 ≈ 44.7 mm

hours hours hours

𝜎𝑡
𝑐𝑜𝑚𝑏 ≈ 240 ps

Visible collisions ≈ 42
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Baseline (nominal) beam parameters and levelling at IP1&5

• Range of potential solutions to operate LHCb Upgrade II at up to 1.5x1034 cm-2s-1

• Horizontal and vertical crossing angle scenarios under consideration

• Number of colliding bunches at IP8: 2572

• Levelling by parallel separation at IP8

• reduction of yearly integrated luminosity at IP1&IP5 - 1% - 2.5%

Pile up ≈ 60

𝜎𝑡
𝑅𝑀𝑆 ≈ 186 ps

𝜎𝑧
𝑅𝑀𝑆 ≈ 44.7 mm

hours hours hours

𝜎𝑡
𝑐𝑜𝑚𝑏 ≈ 240 ps

Visible collisions ≈ 42
For LHCb physics’ goals it’s essential to identify the 

origin collision vertex of the b/c mesons.



4D  tracking and vertexing
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Move towards 4D tracker concept with addition of hit timing:

• Real time track reconstruction critical for Upgrade I and II: Only High-level Trigger

• Timing information will contribute to Pattern Recognition speed and efficiency

• Track time stamping for PV association, PV timing, and combination with downstream 
detectors for beam gas and background control, calorimetry and time of flight



4D  tracking and vertexing
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Move towards 4D tracker concept with addition of hit timing:

• Real time track reconstruction critical for Upgrade I and II: Only High Level Trigger

• Timing information will contribute to Pattern Recognition speed and efficiency

• Track time stamping for PV association, PV timing, and combination with downstream 
detectors for beam gas and background control, calorimetry and time of flight



Pattern recognition improvement
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LHCb Velo
preliminary

LHCb Velo
preliminary



Timing gain
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LHCb Velo
preliminary

LHCb Velo
preliminary



Sensors

• Sensor R&D considering:
• Thin planar
• LGAD and iLGAD
• 3D concepts 

• Starting an evaluation programme using 
Timepix4 as a prototype FE.
• 200 ps TDC

• Final temporal resolution under 
consideration between 20 and 200 ps per 
hit. 

• Many manufacturers shown prototypes: 
CNM, FBK, HPK… 

• How to achieve this resolution with small 
pixel devices?
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Future ASIC challenges

VeloPix (2016) Timepix4 (2019) Velopix2 (202?)

technology 130 nm 65 nm 28 nm

Pixel size 55x55 µm2 55x55 µm2 55x55 µm2

Sensitive area 2 cm2 7 cm2 2 cm2?

Packet size 24 bit 64 bit 64 bit?

Max rate 400 Mhits/cm2/s 180 Mhits/cm2/s 4000 Mhits/cm2/s

Time resolution 25 ns 200 ps 20-50 ps?

Output data rate 20 Gb/s 81 Gb/s 500 Gb/s?

• Cope with increase in Radiation 

damage

• Analog front-end does not scale much -

> about the same size as 

VeloPix/Timepix4 (30% of pixel)

• Cope with hit pile up: 

• @Upgrade I, MIP discharge time ~300 ns for 

1% max pileup. 

• Upgrade II would need 10 times faster rate.

• Per pixel TDC with time resolution < 50ps.

• More information in output and higher 

hit rate.

• Time-walk correction?

• Clock distribution effects? 
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• Fruitful collaboration with the Medipix group has yielded 

the VeloPix ASIC for the LHCb Upgrade I. 

• the Timepix4, with impressive fast timing capabilities is 

scheduled to appear soon.  

• LHCb Upgrade II requirements more demanding still but 

could draw on similar concepts



Cooling for next upgrade

• Operation in vacuum demands 
active cooling.

• Microchannel approach could be 
too complex if a replacement is 
planned.

• Studying the possibility to operate at 
lower temperatures < -30oC

• Avoid runaway at high radiation 
damage

• Mobility gets better at low 
temperatures

• Requires the R&D of different cooling 
fluids… 
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General needs: lightweight, possibly partially 
replaceable modules and mechanics

Micro channels could get cheaper 3d printed Titanium 

substrates, already 
prototyped for Upgrade I



Mechanics
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Possible sensor replacement mechanism

RF+Vacuum Box milled out from an Aluminium block. 

Very complex and demanding procedure. 

• RF box construction is a very 
complex and demanding 
procedure. 

• No foil would be  the ideal 
design.

• Issues:

• Outgassing detectors.

• Harmful wakefield

• Beam impedance.

• Construction without a foil 
also makes more difficult to 
replace detectors.
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Possible sensor replacement mechanism

RF+Vacuum Box milled out from an Aluminium block. 

Very complex and demanding procedure. 

Initial solid forged Al 

alloy block
>98% of material 

removed

Internal mould support 
during machining steps



Summary

• Final items for the upgrade produced.

• Modules being assembled

• Mechanical installation has already started

• We are also planning a next upgrade to run at up to 10 times 
higher instantaneous luminosity.
The high Primary Vertex density motivates a Vertex detector with 
high resolution timing.

• Fast timing shows promising results in the pattern recognition as 
well.

• An ultra high radiation resistant sensor and ASIC technology is 
required to operate through the whole lifetime.

• Alternatively a suitable replacement strategy drives mechanical 
technology R&D.
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Back up
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First test beam with  
final modules in 2006

First test beam with  
final modules in 2018



Design considerations – Radiation 

• At 5 mm, fluence translates to :

1.6 x1014 1MeV neq/fb.
after 300/fb ~5 x1016 neq

• Very challenging constraint for fast timing 

devices.

• A dual technology system could combine 

radiation hardness at the inner part and 

timing resolution at the outer  region. 

•

Planning for a replacement could allow a 

less resistant sensor technology.
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Possible design with 2 technologies: outer 

sensors with better timing but lower  

radiation resistance.

Inner detectors
Radiation hard

Outer detectors
fast timing



Timing experience: Timepix3

• Timepix3 telescope experience 
shows that “4D” tracking is the 
way forward. 

• The  telescope shows virtually 
no ghost track in the 10 ns 
window used in the  
reconstruction.

• Possible to calculate the  slope 
inside the ASIC in a cluster: 
every cluster would be also a 
stub.
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entry

exit

Timepix3 Telescope



HV Tolerance
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HPK non-irrad

HPK KIT irrad

Non uniform

Non parylene coated

Sensors tested in vacuum.



Kazu Akiba

Timepix3 – charge measurement

• The calibration of the charge 
measurement has to be well understood, 
in order to compare different prototypes, 
and also at various irradiation levels.
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Am241 spectrum

• Timepix3 is the ideal tool: very 
precise and easy charge 
collection measurement

• Timepix(1) is not radiation 
hard.

• Medipix3 requires slow 
(tedious) threshold scans

• Velopix is not out. And  it’s 
binary.

• But requires tuning and 
calibration.



Charge calibration

• Verified with 
radioactive sources:1 
week exposure
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Am 241 

per pixel 

fit

Test 

pulse

Per pixel 

fit

Am 241 

spectrum all 

pixels

Non-clustered
Clustered

Am241 uncalibrated



IV Model

• Current generated due to 
avalanche in the sensor.

• Avalanche is proportional 
to the radiation damage.

• (Shot noise increases with 
temperature and  induces  
breakdown)*

• Related to the charge 
multiplication
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Foil

• Separation from primary 
LHC vacuum introduces 
material which degrades 
the IP performance
• physics performance benefits 

from no foil.
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Velo.0

300µm

No Foil

Foil is the biggest contribution 

before second hit

Upgrade I

Design minimizes material before 
2nd hit and extrapolation distance.

µ
µ

B0

foil

sensors



Same space, different time

38



Microchannel cooling

• Efficient cooling solution 
is required to maintain 
the sensors at  < -20oC 

• No CTE mismatch

• This is provided by the 
novel technique of 
evaporative CO2

circulating in 120 μm x 
200 μm channels within a 
silicon substrate.

15 Dec 2019 – 12 HSTD 2019Kazu Akiba 39

SEM images of etched wafer before bonding

inlet restriction

main
channel

channels output directly 
to connector

Two step channel
etching



Modules
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Modules to be built 
in Manchester and 
Nikhef

Hybrids designed 

by Liverpool

Ultra high speed 

copper links  

developed in Glasgow

Microchannels

developed by CERN 

and Oxford

Sensors 

developed by 

Rio/CERN/USC

Liverpool

ASICs created by 

Nikhef and CERN



Irradiation

• Sensors were irradiated at 

• JSI/IST (n/reactor)

• KIT (26 MeV p/beam), 

• IRRAD (24 GeV p/beam)

• collected charge > 6000 e-.

• The sensors must  withstand 1000 V

without breakdown after non 

uniform irradiation.

• Measure efficiency and resolution 

after irradiation.
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IRRAD @ CERN

24 GeV protons

KIT @ Karlsruhe 26 MeV p

Reconstructed profile

Irradiation profile

setup



Efficiencies
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At  1000 V the corners are recovered.

36 mm

n-on-n

S27 Micron 300V

S22 S17 HPK 300V

JSI irradiated

sensors

8x1015 1MeV neq.cm-2


