

INSTITUTE OF SPACE AND ASTRONAUTICAL SCIENCE

Development of a Low-Noise Front-end ASIC for CdTe Detectors

Tenyo Kawamura ^a, Tadashi Orita ^a, Shin'ichiro Takeda ^a, Shin Watanabe ^b, Hirokazu Ikeda ^b, Tadayuki Takahashi ^a

^a Kavli IPMU, University of Tokyo

^b ISAS, JAXA

December 18, 2019

12th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD12) at Hiroshima, Japan

X-ray and Gamma-ray Imaging with Spectroscopy

Nuclear Medicine

Astrophysics

Good energy resolution is crucial for hard X-ray and gamma-ray imaging.

For realizing Imaging with good spectroscopy

Our best spectrum with CdTe

- CdTe
 - 3mm x 3mm
 - Imm thickness
- Front-end ASIC
 - Only one readout chain
 - Only analog circuit (CSA and Shaper)

Our goal is to extend readout channels, keeping high spectroscopic capability:

- Resolution ~ 1 keV
- Threshold ~ 5 keV

For High Energy Resolution and Low Threshold

For High Energy Resolution and Low Threshold

Circuit Design

Circuit Design

Event-driven readout

Our Latest ASIC: KW04H64

HSTD12

Our Latest ASIC: KW04H64

	A.O.S. m 	
Fabrication process	X-FAB XH035 (CMOS)	
Chip size	7.12 mm × 8.03 mm	
Number of channels	64	
Power rail	±1.65 V	
Power consumption	2.1 mW/ch	
Peaking time	~1.8 us (from simulation)	

HSTD12

ASIC Performance from Simulation

✓ Dynamic range, Linearity

✓ Noise performance

Dynamic range

~32000 e⁻ (for each polarity)

ENC @0 pF load 33.0 e⁻ (Slow shaper) 58.4 e⁻ (Fast shaper)

7

Slew-rate Operation

Slew-rate Operation at Fast Shaper

Slew rate operation at fast shaper is essential for insensitivity of trigger timing to input charge.

Accurate timing measurement — Accurate peak capturing

Slew-rate Operation at Fast Shaper

Slew rate operation at fast shaper is essential for insensitivity of trigger timing to input charge.

Accurate timing measurement — Accurate peak capturing

Slew-rate Operation at Fast Shaper

Slew rate operation at fast shaper is essential for insensitivity of trigger timing to input charge.

Accurate timing measurement — Accurate peak capturing

Slew-rate Operation at Slow Shaper

In our circuit, it has turned out that slew-rate operation is also effective for better noise performance. G. Sato et al., 2011

Slew-rate operation improved ENC for ~10 e⁻.

Slew-rate Operation at Slow Shaper

In our circuit, it has turned out that slew-rate operation is also effective for better noise performance. G. Sato et al., 2011

Slew-rate operation improved ENC for ~10 e⁻.

The Problem under Slew-rate Operation

Dynamic range is limited by slew-rate operation

as long as sample & hold circuit is employed.

The Problem under Slew-rate Operation

Dynamic range is limited by slew-rate operation

as long as sample & hold circuit is employed.

Peak hold circuit is preferred for wider dynamic range under slew-rate operation.

HSTD12

Experimental Setup (Spectroscopy)

	Wire Wire ASIC	bonding
Material	CdTe	Cate
Size	4 mm x 4 mm	
Thickness	1 mm	
Cathode	16 electrodes (strip)	
	250 um pitch	-BASH
	Platinum	80182 60H H
Anode	1 electrodes (plain)	
	Indium	

Spectrum Measured by Slow Shaper

Spectrum Measured by Fast Shaper

Only single hit events/Result of one channel

Summary

We have studied readout architectures for hard X-ray and gamma-ray imaging with high spectroscopic capability.

- Slew rate operation —> Better noise performance (~16%)
- Peak hold circuit enables wide dynamic range under slewrate operation.
- We have succeeded in noise evaluation at the fast shaper.

✓ POSTER@B1F Meeting rooms #5-6

"Development of CdTe Hybrid Pixel ASIC for Hard X-ray Imaging"

- TSMC 0.35 um
- •28 x 28 ch
- 250 um pitch
- ENC=50 e-