Imaging and spectral performance of a 60μm-pitch CdTe double-sided strip detector

Shunsaku Nagasawa
(Kavli IPMU, The Univ. of Tokyo)

Kento Furukawa (Kavli IPMU), Lindsay Glesener (Univ. of Minnesota)
Miho Katsuragawa (Kavli IPMU), Shin’ichiro Takeda (Kavli IPMU),
Shin Watanabe (JAXA), Tadayuki Takahashi (Kavli IPMU)
CdTe Semiconductor

CdTe Semiconductor

- High density & Large Atomic number
 \(\rho = 5.85 \text{ g/cm}^3, \ Z_{\text{Cd}} = 48 \ Z_{\text{Te}} = 52 \)
 → High detection efficiency

- Large Bandgap Energy \(E_{\text{Gap}} = 1.44 \text{ eV} \)
 → A portable experimental system

- Lower charge transport properties
 \((\mu \tau)_e = 2 \times 10^{-3} \ (\mu \tau)_h = 1 \times 10^{-4} \ [\text{cm}^2 / \text{V}] \)
 - Uniform & Thin device
 - Schottky diode (Takahashi+ 1998)
 - Guard ring (Nakazawa+ 2004)

Extremely low leakage current, High bias voltage
→ Full charge collection & High energy resolution
CdTe-DSD and its Applications

CdTe Double-Sided Strip Detector (CdTe-DSD)

Strip electrodes orthogonally placed on both side → Energy and 2-D position information

Applications

✓ Non-destructive analysis (Katsuragawa+ 2018)
✓ Medical Application: in-vivo imaging
 SPECT system for small animal (Takeda+ 2018)
 etc...

60 μm fine-pitch CdTe-DSD (128×128 strips)
for the FOXSI-3 Sounding Rocket experiment
(Steven+ 2016, Sophie+ 2019, Furukawa+ 2019)

- Depth of Photon Interaction
- Charge sharing event
Energy Spectrum 241Am

Gamma-ray spectra of 241Am

Condition: Bias Voltage = 200 V
Operating Temperature = -20 °C

At high energy peak ~ 60 keV,
Pt (Cathode) side forms a tail structure

Caused by low charge transport of holes
$(\mu \tau)_e = 2 \times 10^{-3}$ $(\mu \tau)_h = 1 \times 10^{-4}$ [cm2/V]

- Low Energy photon \lesssim 30 keV near the surface of Pt (Cathode)
- High Energy photon near the surface of Al (Anode)
→ more holes can be trapped

Depth of Interaction correction is important!
Depth of Interaction Effect

Al Side Energy vs Pt Side Energy
(Anode) (Cathode)

Energy Average vs Energy Difference

\[\frac{E_{Al} + E_{Pt}}{2} \text{ vs } E_{Pt} - E_{Al} \]

Structure caused by charge loss of holes

This caused a tail of spectrum at high energy peak
Definition of “Angle θ”

1) Pick up one pixel, and draw “Energy Average” and “Energy Difference”

2) Distribute counts randomly in each bin (bin which counts less than 3 are ignored)

3) Define “Angle θ” using Principal Component Analysis (PCA)

repeat 1) - 3) using every pixel (128ch × 128ch)

$\theta_{MAX} = 60.94 \text{ deg.}$

define θ
every pixel

Energy Reconstruction Method

1) $|E_{Pt} - E_{Al}| < 0.5$ keV
Simply using Energy Average $\frac{E_{Al} + E_{Pt}}{2}$ as a reconstructed energy

2) $|E_{Pt} - E_{Al}| > 0.5$ keV
Correct tail structure using straight line of angle θ_{MAX} and calculate a reconstructed energy
Reconstructed Energy Spectrum

Pt & Al side Energy

- Pt side Energy E_{Pt} (Cathode)
- Al side Energy E_{Al} (Anode)

1.3 keV (FWHM) @60 keV, Al side
1.1 keV (FWHM) @14 keV, Al side

Reconstructed Energy

1.2 keV (FWHM) @60 keV
0.78 keV (FWHM) @14 keV

Energy resolution is improved by using both side of energy information.
Tail structure at high energy peak is properly corrected.
Radioisotope for Evaluating Imaging Performance

Purpose: Obtain a sub-strip position resolution (< 60 μm)

1 mm is too big!

Microchannel phantom (\(^{57}\text{Co} 800\text{kBq}\))

(in collaboration with the Japan Radioisotope Association)

A new type of **sealed radioisotope** (RI) with from **0.167 mm to 1 mm pattern** structure

It is suitable for testing how accurately we can reconstruct the fine structure of target sources in a laboratory easily
100 μm Pinhole

100 μm knife-edge Pinhole

5 mm thick Tungsten
Opening angle : 40 degree

For high energy photon, effective pinhole diameter is a little bigger
14 keV : 105 μm
30 keV : 120 μm
(90% Absorption)
100 µm strip Setup

To make 100 µm size RI source,

- \(^{133}\text{Ba}\) point radioactive source (diameter = 1 mm)
- 100 µm slit made by 0.5 mm thickness tungsten

To suppress background Pb-Sn-Cu graded-Z shield was installed under the pinhole
Reconstruct image using 28-32 keV Energy events

60 μm strip resolution is insufficient to image 100 μm slit

To realize sub-strip resolution, charge sharing information between the adjacent channel should be considered
Interaction Depth vs Charge Sharing

\[E_{Al} \gg E_{Pt} \quad \leftarrow \text{holes are trapped} \]
\[= \text{interact near the surface of Al (Anode)} \]

As Photon interacts deeper, Pt charge sharing events increase
\[\rightarrow \text{Charge cloud is spreading} \]
Position Reconstruction Method

<table>
<thead>
<tr>
<th>Previous Methods (Furukawa+ 2019)</th>
<th>Improved Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 strip = 60 μm</td>
<td>$E_1 = 20 \text{ keV}$</td>
</tr>
<tr>
<td></td>
<td>$E_2 = 10 \text{ keV}$</td>
</tr>
<tr>
<td>Randomly assigned according to</td>
<td>$X = \frac{E_1X_2 + E_2X_1}{X_1 + X_2}$</td>
</tr>
<tr>
<td>Uniform probability distribution</td>
<td></td>
</tr>
<tr>
<td>The width of two region</td>
<td></td>
</tr>
<tr>
<td>= Ratio of Single/Double-strip event number</td>
<td></td>
</tr>
</tbody>
</table>

Single-strip event **Double-strip event**

Randomly assigned according to **Uniform probability distribution**

Double-strip event = Energy-weighted center of each strip position of X_1 and X_2
Sub-strip Resolution Image

100 μm slit image was properly reconstructed!

By using charge sharing information, sub-strip resolution was confirmed.

Previous Methods

Improved Methods
Summary

60 μm fine-pitch CdTe-DSD for the FOXSI-3 Sounding Rocket experiment

Spectral Performance

Tail structure of Pt side (Cathode) at high energy peaks

Depth of Interaction correction

- Correct tail structure properly
- 1.2 keV (FWHM)@60 keV, 0.78 keV (FWHM)@14 keV

Imaging Performance

Using an information of charge sharing between the adjacent channel

100 μm slit image was properly reconstructed → sub-strip resolution was confirmed