Serial powering for the Phase 2 upgrade of the CMS pixel detector

Vasilije Perovic on behalf of the CMS Collaboration
- Instantaneous luminosity (design) to increase 7.5x

- **A number of technical novelties are needed**
 (Talk by S. Orfanelli on CMS Inner Tracker upgrade)
Some of the challenges for the Phase 2 Inner Tracker

- High luminosity
 → Radiation-hard design

- Increased latency and hit rate
 - Smaller feature size (65nm CMOS)
 - Increased granularity
 → High supply current
 (~2 A /chip, ~30 kA total)

- Good tracking performance
 → Low mass design

Serial powering has never been attempted before in a HEP experiment.

JINST 12 (2017) no.03, P03004
Serial powering

Parallel powering (current detector)

\[I_o = nI_m \]

Power loss in parallel powering \(\sim n^2I_m^2R_C \)

Serial powering (Phase 2 detector)

\[I_0 = I_m \]

Power loss in serial powering \(\sim I_m^2R_C \)
Serial powering

- Constant input current
- Different local grounds → on-chip reference needed
Serial powering

- Constant input current
- Different local grounds → on-chip reference needed

- High Voltage distributed in parallel
 - Planar sensors (*talk by G.Steinbrueck*) can work with this
 - 3D sensors (*talk by M.Meschini*) require higher HV granularity
Serial powering

Possible forward bias with HV off (can be avoided)
Serial powering

- Constant input current
- Different local grounds → on-chip reference needed

- High Voltage distributed in parallel
 - Planar sensors (*talk by G. Steinbrueck*) can work with this
 - 3D sensors (*talk by M. Meschini*) require higher HV granularity

- Possible forward bias with HV off (can be avoided)
Serial powering

- Constant input current
- Different local grounds → on-chip reference needed

- High Voltage distributed in parallel
 - Planar sensors (*talk by G.Steinbrueck*) can work with this
 - 3D sensors (*talk by M.Meschini*) require higher HV granularity

- Possible forward bias with HV off (can be avoided)

- Single failure can compromise the chain
Serial powering

- Constant input current
- Different local grounds → on-chip reference needed

- High Voltage distributed in parallel
 - Planar sensors (*talk by G.Steinbrueck*) can work with this
 - 3D sensors (*talk by M.Meschini*) require higher HV granularity

- Possible forward bias with HV off (can be avoided)

- Single failure can compromise the chain
 → Modules with parallel-powered chips
Serial powering

- Constant input current
- Different local grounds → on-chip reference needed
- High Voltage distributed in parallel
 - Planar sensors (talk by G. Steinbrueck) can work with this
 - 3D sensors (talk by M. Meschini) require higher HV granularity
- Possible forward bias with HV off (can be avoided)
- Single failure can compromise the chain → Modules with parallel-powered chips
Serial powering

- **Constant input current**
- Different local grounds
 → **on-chip reference** needed

- High Voltage distributed in parallel
 - Planar sensors (*talk by G.Steinbrueck*) can work with this
 - 3D sensors (*talk by M.Meschini*) require higher HV granularity

- Possible forward bias with HV off (can be avoided)

- Single failure can compromise the chain
 → Modules with parallel-powered chips

- **Ohmic load to the supply**
Serial powering – Shunt LDO regulator

- Constant voltage from the constant supply current
- Shunt + Low Dropout Regulator → ohmic behaviour is seen by the power supply
Serial powering – Shunt LDO regulator

- Constant voltage from the constant supply current
- Shunt + Low Dropout Regulator → ohmic behaviour is seen by the power supply
Serial powering

- Modules \(\rightarrow\) **serial powering**
- Chips on modules \(\rightarrow\) **parallel powering**
- HV distribution \(\rightarrow\) **parallel** and referenced to the local grounds in the **serial** chain
- Communication is **AC coupled** to **parallel-powered** readout electronics with **DC-DC converters**.

*We will essentially use a **mixed powering scheme**.*
Prototype test chip – RD53A

- Joint ATLAS and CMS effort
- About ½ size of the final chip (~1 A current)
- 65 nm CMOS technology

- Three powering modes:
 - Shunt LDO
 - LDO (no shunt)
 - Direct
Serial Powering – RD53A SLDO regulator

- **05A5_in**
- **05A5_analog**
- **05A5_digital**

Voltage V_{in} vs. current I_{in} at different levels:
- 1.0V
- 1.4V
- 1.2V
- V_{offset}

V_{in}, RD53A

V_{analog}

$V_{digital}$
Serial Powering – RD53A SLDO regulator

![Graph showing Vout vs. Iin for different input currents and voltage levels. The graph includes lines for 0.5A_in, 0.5A_analog, and 0.5A_digital, with voltage levels at 1.4V, 1.2V, and 2.0V.](image-url)
RD53A SLDO operation

Individual operation

Parallel operation
RD53A SLDO operation

Individual operation

Parallel operation

![Graph showing individual and parallel operation of RD53A SLDO operation.](image-url)
RD53A SLDO operation

- Can fail if input is ramped → fixed in RD53B (next version)
RD53A prototype modules
RD53A module SLDO operation

[Graphs showing the relationship between voltage (V) and current (Iin) for different ROCs (ROC0, ROC1, ROC2, ROC3).]
Serially powered RD53A modules

Pixel-by-pixel difference between serially powered and single modules

Module input voltage

- Ramp up
- Ramp down

Serially powered RD53A modules

Module input voltage
Summary

- High-Luminosity LHC will run at a luminosity increased by a factor of 7.5 compared to the current one
- CMS detector will undergo an upgrade to be able to cope with this increase
- Serial powering is one of the required novelties to meet these requirements

- RD53A prototype readout chip has been developed (joint ATLAS and CMS)
- Serially powered quad modules have been built
 - Serial powering is robust w.r.t. noise
 - Parallel powering on each module is beneficial for startup
 - Hysteresis is beneficial in preventing unwanted oscillations

- A chain of prototype modules has been operated and serial powering scheme successfully deployed.

- A lot of work ahead!
BACKUP