Geant4-10.05-ref03

Geant4: improving computing performance by removing redundant G4Log calls

Mihály Novák CERN (EP-SFT)

Mihály Novák Geant4 Weekly Meeting, 2nd April 2019, Geneva, CERN

Motivation	Solution 00	Results	Conclusion
Contents			Geant4

Motivation

2 Solution

3 Results

- Electromagnetic component
- Including hadronic component

④ Conclusion

Motivation	Solution 00	Results 00000	Conclusion
Outline			Seant4

1 Motivation

Motivation	Solution	Results	Conclusion
•0			

Everything started with the G4EmElementSelector¹:

- for EM models, the G4VEmModel base class provides the possibility to (automatically)build a collection of G4EmElementSelector-s for each material cuts couple
- this collection can be used at run-time, to sample the target atom for the given interaction (in case of multi-element materials)
- each individual (i.e. for a given model given material cuts couple) G4EmElementSelector of the collection stores a table of discrete probabilities of having the given interaction on a given element of the material (i.e. $P(Z_i) = \sum_{Z_i} / \Sigma$) over a discrete energy grid: equally spaced in log energy scale
- the implementation of the table is a vector of G4PhysicsLogVector (as many as elements in the given material)
- at run-time, the target atom is sampled according to this discrete probability distribution: the probabilities are interpolated for the given primary energy
- however, the energy bin index was re-computed for each possible target element during the interpolation: because selectors are individual log-vectors (was fixed in 10.05)

 $^{^1}$ see my presentation at the last collaboration meeting in Lund (Section 3. from slide #37 here)

Motivation	Solution	Results	Conclusion
••			

The issue was however more general:

- the above G4EmElementSelector problem, i.e. extensive use of the G4Log, was clearly shown by the profiling done as part of the new G4SeltzerBergerModel development¹
- however, the origin of the issue was in the underlying G4PhysicsLogVector
- G4PhysicsLogVector is heavily used in Geant4 to store kinetic energy dependent data (dE/dx, R, Σ_t , Σ_{Z_i} , σ , etc.) in a discretised form and to obtain interpolated values at run-time
- at the interpolation, the logarithm of the actual kinetic energy value i.e. G4Log(E_k) needs to be known (for the computation of the abscissa bin index i such that E_i ≤ E_k < E_{i+1})
- the bin index is very often computed, i.e. G4Log(E_k) is evaluated, in spite of the fact that the last index used ilast is (often) cached and checked before the bin index computation
- on the same time, these G4PhysicsLogVectors are accessed at each simulation step to provide values needed to determine the actual physics step length: individual table accesses with the same value of E_k results in redundant G4Log(E_k) computations
- this is the main source of the significant run-time cost of the G4PhysicsVector::Value(G4double E_k, size_t& ilast) method that could have been observed for a long time

¹ see my presentation at the last collaboration meeting in Lund (Section 2. from slide #30 here)

Motivation	Solution °°	Results	Conclusion
Outline			Geant4

Motivation	Solution ●○	Results	Conclusion
To avoid re	dundant computations of G4Log(E	\mathbf{k}), the proposed ¹ solution	was applied:
• to (1)	store the logarithm of the kinetic energy	gy whenever is already compute	ed:
inline	<pre>void G4DynamicParticle::SetKineticEnergy</pre>	y(G4double aEnergy)	
	gEkinUpToDate = (isLogEkinUpToDate && (ineticEnergy = aEnergy;	theKineticEnergy == aEnergy));	
inline	G4double G4DynamicParticle::GetLogKinet	<pre>icEnergy() const</pre>	
the	isLogEkinUpToDate) { LogKineticEnergy = (theKineticEnergy > G4Log(theKineticEner LogEkinUpToDate = true;		
} retu }	n theLogKineticEnergy;		
• • •	propagate to the interpolation metho ple E_k, G4double LogE_k, size_t		icsVector::Value(
G4doub	le G4PhysicsVector::Value(G4double theEn size_t& lastId		

 1 see my presentation at the last collaboration meeting in Lund (Section 3. slide #40~here)

Motivation	Solution	Results	Conclusion
	00		

Additional information:

- about 40 files have been modified over 5 categories to introduce and to make use of the new functionality
- the simulation results are not affected by the changes: results stay **numerically identical** before and after merging the corresponding changes
- the profiling results shown in the following slides were obtained by:
 - using valgrind with the --tool=callgrind
 - instrumentation only in the event-loop: CALLGRIND_START_INSTRUMENTATION and CALLGRIND_STOP_INSTRUMENTATION at the end/beginning of the Begin-/EndOf RunAction with the --instr-atstart=no (i.e. pure run-time contributions are measured)
 - Geant4-10.05-ref02 refers to the -ref02 master before while Geant4-10.05-ref03 to the master after merging the corresponding changes
 - both versions of Geant4 were build and used in DEBUG mode during the profiling to see all inlined methods (i.e. look only the call counters and do not give significance neither to the inclusive nor to the exclusive performance contributions)

Motivation	Solution 00	Results	Conclusion
Outline			GEANT4

Motivation	Solution	Results	Conclusion
		00000	
Electromagnetic component			

3 Results

Electromagnetic component

Motivation	Solution	Results ○●○○○	Conclusion
Electromagnetic compo	nent		
10 [GeV] e ⁻ in Sim	plified Sampling Calorimet	t er :50 layers of 2.5 [mm] Pb and .	5.7 [mm] liquid-Ar
Geant4-10.05-1	ref02:		
Incl. Self Ca	lled Function		
r 9.48 0.67 40	0 680 456 🔳 G4PhysicsVe	ector::Value(double, unsigned lor	ng&) const

 $^{^1}$ see my presentation at the last collaboration meeting in Lund (Section 3. slide #40~here)

Motivation		Solution	Results	Conclusion
00			0000	
Electromagn	etic component			
10 [GeV]	e^- in Simplified S	ampling Calor	imeter: 50 layers of 2.5 [mm] Pb and	5.7 [mm] liquid-Ar
Geant4	-10.05- <mark>ref02</mark> :			
Incl.	Self Called	Function		
<mark>1</mark> 9.48	0.67 40 680 45	6 🔳 G4Physi	csVector::Value(double, unsigned lo	ng&) const

Geant4-10.05-ref03:	with the new Va	<pre>lue(E_k, LogE_k,</pre>	<pre>ilast) interface method</pre>
---------------------	-----------------	-----------------------------	------------------------------------

		Called	Function		
5.01	0.52	30 353 168	G4PhysicsVector	::Value(double, double, unsigned long&)	
2.45	0.18	10 327 288	G4PhysicsVector	::Value(double, unsigned long&) const	

¹ see my presentation at the last collaboration meeting in Lund (Section 3. slide #40 here)

Motivation	Solution	Results ○●○○○	Conclusion
Electromagnetic component			
10 [GeV] e^- in Simple	ified Sampling Calorimet	ter: 50 layers of 2.5 [mm] Pb and	5.7 [mm] liquid-Ar
Geant4-10.05- re	f02:		
Incl. Self Called	d Function		
1 9.48 0.67 <u>40 6</u>	80 456 <mark>- 1</mark> G4PhysicsVe	ector::Value(double, unsigned lor	ng&) const
\sim 25 % goes throug	gh the old while \sim 75 %	goes through the new interface	
Geant4-10.05-re	f03: with the new Val	ue(E_k, LogE_k, ilast) interfac	ce method
Incl. Self Called	Function		
5.01 0.52 30 353	3 168 📕 G4PhysicsVec	tor::Value(double, double, unsig	ned long&)
2.45 0.18 <u>10 327</u>	7 288 🔳 G4PhysicsVec	tor::Value(double, unsigned long	g&) const

 $^{^1}$ see my presentation at the last collaboration meeting in Lund (Section 3. slide #40~here)

Motivation So	olution	Results o●ooo	Conclusion
Electromagnetic component	-		
10 [GeV] e ⁻ in Simplified Samp	oling Calorimeter: 50 layers	of 2.5 [mm] Pb and 5.7 [mm] I	iquid-Ar
Geant4-10.05- ref02 :			
Incl. Self Called F	Function		
r 9.48 0.67 40 680 456	G4PhysicsVector::Value(c	louble, unsigned long&) cons	t
Incl. Self Called F	unction		
6.57 1.95 57 714 780 -	G4Log(double)		
Geant4-10.05- ref03 :~ 24	4 % reduction in run-t	ime G4Log-calls for EM	shower1
Incl. Self Called Fun	ction		
5.01 0.52 30 353 168 📕	G4P <mark>hysicsVector::Value(do</mark>	uble, double, unsigned long&	&)
2.45 0.18 10 327 288 📕	G4PhysicsVector::Value(do	uble, unsigned long&) const	
Incl. Self Called Fu	inction		
4.96 1.47 44 014 751	G4Log(double)		

 1 see my presentation at the last collaboration meeting in Lund (Section 3. slide #40~here)

Motivation	Solution	Results	Conclusion
		00000	
Including hadronic component			

3 Results

Including hadronic component

$\label{eq:second} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Motivation		So 00	lution		Results ○○○●○	Conclusion		
Geant4-10.05-ref02: Incl. Self Called Function ↓ 9.97 0.68 320 702 629 G4PhysicsVector::Value(double, unsigned long&) const 7.35 0.25 222 889 366 G4PhysicsVector::Value(double) const An additional Value(G4double E_k) interface method: • that eventually calls the earlier Value(G4double E_k, size_t& ilast) interface method • used mainly (~97%) by neutron XS (elastic, inelastic, xapture) • do not benefit from cached last bin index used → G4Log is always recomputed ! inline G4double G4PhysicsVector::Value(G4double theEnergy) const { size_t idx=0;	Including had	Including hadronic component							
Incl.SelfCalledFunction[9.970.68320 702 629G4PhysicsVector::Value(double, unsigned long&) const7.350.25222 889 366G4PhysicsVector::Value(double) constAn additional Value (G4double E_k) interface method:• that eventually calls the earlier Value (G4double E_k, size_t& ilast) interface method• used mainly (~97%) by neutron XS (elastic, inelastic, xapture)• do not benefit from cached last bin index used \rightarrow G4Log is always recomputed !inlineG4double G4PhysicsVector::Value(G4double theEnergy) const $size_t$ idx=0;	CMS simulation: 100 random (particle, direction, energy \in [1GeV $-$ 100GeV]) events without field								
<pre> 9.97 0.68 320 702 629 ■ G4PhysicsVector::Value(double, unsigned long&) const 7.35 0.25 222 889 366 ■ G4PhysicsVector::Value(double) const An additional Value(G4double E_k) interface method: • that eventually calls the earlier Value(G4double E_k, s:ze_t& ilast) interface method • used mainly (~97%) by neutron XS (elastic, inelastic, xapture) • do not benefit from cached last bin index used → G4Log is always recomputed ! inline G4double G4PhysicsVector::Value(G4doub?e theEnergy) const { size_t idx=0; } } } </pre>	Geant4–	Geant4-10.05- ref02 :							
<pre>7.35 0.25 222 889 366 G4PhysicsVector::Value(double) const f An additional Value(G4double E_k) interface method:</pre>	Incl.	Self	Called	Function					
<pre>An additional Value(G4double E_k) interface method: that eventually calls the earlier Value(G4double E_k, size_t& ilast) interface method used mainly (~97%) by neutron XS (elastic, inelastic, xapture) do not benefit from cached last bin index used → G4Log is always recomputed ! inline G4double G4PhysicsVector::Value(G4double theEnergy) const size_t idx=0;</pre>	9.97	0.68	320 702 629	G4PhysicsV	ector::Value	e(double, unsigned	long&) const		
 that eventually calls the earlier Value(G4double E_k, size_t& ilast) interface method used mainly (~97%) by neutron XS (elastic, inelastic, xapture) do not benefit from cached last bin index used → G4Log is always recomputed ! inline G4double G4PhysicsVector::Value(G4double theEnergy) const { size_t idx=0; 	7.35	0.25	222 889 366	G4PhysicsV	ector::Value	e(double) const			
 used mainly (~97%) by neutron XS (elastic, inelastic, xapture) do not benefit from cached last bin index used → G4Log is always recomputed ! inline G4double G4PhysicsVector::Value(G4doub?e theEnergy) const { size_t idx=0; 	An addit	tional 1	/alue(G4double	E_k) interface I	method: —				
 do not benefit from cached last bin index used → G4Log is always recomputed ! inline G4double G4PhysicsVector::Value(G4doub?e theEnergy) const { size_t idx=0; 	• that	: eventı	ually calls the ear	lier Value(G4dou	uble E_k, s	ze_t& ilast) inter	face method		
<pre>inline G4double G4PhysicsVector::Value(G4double theEnergy) const { size_t idx=0;</pre>	• used	d mainl	y (\sim 97%) by neu	utron XS (elastic,	inelastic, xa	pture)			
<pre>G4double G4PhysicsVector::Value(G4double theEnergy) const { size_t idx=0;</pre>	• do r	not ben	efit from cached	last bin index use	ed ightarrow G4Log	; is always recompute	ed !		

Motivation Sc		blution	Results ○○○●○	Conclusion				
Inclu	Including hadronic component							
CN	AS simu	lation	: 100 random (p	particle, direction, ene	$ergy \in [1GeV - 100GeV]) e$	vents without field		
G	eant4-	-10.0	5- ref02 :					
ſ	Incl.	Self	Called	Function				
	9.97	0.68	320 702 629	G4PhysicsVect	tor::Value(double, unsign	ed long&) const		
Γ	7.35	0.25	222 889 366	G4PhysicsVect	tor::Value(double) const			

Geant4-10.05-ref03: with the new Value(E.					E_k, LogE_k,	<pre>ilast) interface method</pre>
			Called	Function		
	5.42	0.69	304 046 692	📕 G4PhysicsVect	ór::Value(doub	le, double, unsigned long
	0.69	0.04	16 655 937	G4PhysicsVect	or::Value(doub	le, unsigned long&) const

0.29 0.00 4 275 138 🔳 G4PhysicsVector::Value(do	ouble) const
---	--------------

Motivation	Solut oo	tion	Results	Conclu	usion				
Including hadro	ncluding hadronic component								
CMS simula	CMS simulation : 100 random (particle, direction, energy \in [1GeV – 100GeV]) events without field								
Geant4-1	0.05- ref02 :								
Incl. S	elf Called F	Function							
9.97 (0.68— <u>320 702 629</u> -	G4PhysicsVe	ctor::Value(double, u	unsigned long&) const					
7.35 (.25 222 889 366 🛽	G4PhysicsVe	ctor::Value(double)	const 🦳					
		~	98 % reduction in V	alue(G4double E_k) ca	alls				
\sim 5 % goes	through the old whil	le ~95 % goes	through the new int	erface					
Geant4-1	0.05- ref03 : with	the new Value	E_k, LogE_k, ilast	;) interface method					
Incl. Self	Called Fun	iction							
5.42 0.6	9 🛛 304 046 692 🍆 🦿	G4PhysicsVect	or::Value(double, do	uble, unsigned long					
0.69 0.0	4 🛂 16 655 937 🔳	G4PhysicsVect	or::Value(double, un	signed long&) const					
0.29 0.0	0 4 275 138 🔳	G4PhysicsVect	or::Value(double) co	nst 🖌					
				· · · · · · · · · · · · · · · · · · ·					

Motivation			Solution	Results ○○○●○	Conclusion
Including h	iadronic co	mponent			
CMS sir	nulation:	100 random	particle, direction, energy \in [1	GeV - 100GeV]) events witho	ut field
Geant	4-10.05	-ref02:			
Incl.	Self	Called	Function		
9.9	0.68	320 702 62	9 🔲 G4PhysicsVector::Valu	e(double, unsigned long&)	const
7.3	5 0.25	222 889 36	6 📕 G4PhysicsVector::Valu	e(double) const	
Incl.	Self C	alled	Function		
4.93	1.46 3	22 222 206	- G4Log(double)		
Geant	4-10.05	5-ref03:	\sim 62 $\%$ reduction in run	-time G4Log-calls !!!	
Incl.	Self Ca	alled	Function		
5.42	0.69 30	04 046 692	G4PhysicsVector::Value(double, double, unsigned lo	ng
0.69	0.04	16 655 937	G4PhysicsVector::Value(double, unsigned long&) co	nst
0.29	0.00	4 275 138	G4PhysicsVector::Value(double) const	
Incl.	Self Ca	alled	Function		
1.94	0.58 1	24 351 365	G4Log(double)		

Motivation	Solution	Results	Conclusion
		00000	
Including hadronic component			

CMS simulation: 100 random (particle, direction, energy $\in [1 \text{GeV} - 100 \text{GeV}]$) events without field **These give a run-time speed-up of**:

- ~7.6-8 % on my MacBook Pro (MacOS 10.13.2), 2.8 GHz Intel Core i7 processor with 16 GB 1600 MHz DDR3 memory using Apple LLVM version 10.0.0 (clang-1000.10.44.4) (all local)
- ~3.8-4 % on my AMD Desktop (SLC 6.10 Carbon), 3.5 GHz AMD PRO A10-9700 R7 processor with 8 GB DDR4-2400 SDRAM memory using gcc 8.2.0 sourced from /cvmfs/sft.cern.ch/lcg/... (i.e. not all local)
- the run time of the same simulation is $\sim 2 \times$ more on the AMD desktop compared to the (all local) laptop: more time spent on communication than floating point operations \rightarrow less visible any floating point operation improvements
- additional performance measurements were done by Gabriele (uniform field turned ON) giving ~11 % on his laptop MacBook Pro (MacOS 10.14.3), 2.8 GHz Intel Core i7 processor with 16 GB 1600 MHz DDR3 memory using Apple LLVM version 10.0.0 (clang-1000.11.45.5) (all local)

Motivation	Solution °°	Results	Conclusion
Outline			GEANT4

Motivation	Solution	Results	Conclusion

A significant number of redundant G4Log calls have been eliminated in Geant4-10.05-ref03 :

- based on the results of profiling and detailed understanding of the toolkit
- by introducing functionality to store and re-use the already computed G4Log(E_k) value
- \sim 24-62 % of the run time G4Log calls is eliminated by making use of the new functionality in the EM and Hadronic (neutornXS) physics
- \bullet it gives a measurable run-time improvement of ${\sim} \textbf{2-8}$ % depending on the configuration
- the measured run-time effect strongly depends on the architecture
- the current way of performance monitoring might be reconsidered and improved in order to provide more stable and more sensitive results