Initial nucleon state (impulse approximation)

V. Grichine (LPI)

Abstract

The initial nucleon state is discussed in the impulse approximation, when the interacting nucleon takes all 4-momentum transfer from projectile, while the rest of nucleus behaves as spectator. The nucleon invariant mass distributions are shown for both 1p1h- (one particle, one hole) and 2p2h-kinematics, utilizing the nucleon momentum spread due to two- Γ generator (Back up).

1 Outline

- 1. 1p1h-kinematics.
- 2. 2p2h-kinematics.
- 3. Invariant nucleon mass distributions.
- 4. Conclusion.

V. Grichine
Geant4 meeting

2 1p1h-kinematics

A projectile, say ν , interacts with a on-shell nucleus in the rest, $(M_A, \mathbf{0})$. Inside the nucleus, nucleons move being interacting and bound. Then the nucleon(s) and the rest (A-1) of the nucleus are off-shell. We suppose that the nucleon has momentum, \mathbf{k} , sampled according to the nucleon momentum distribution. Then, the initial nucleus state kinematics reads, in terms of the Lorentz vectors:

nucleon:
$$(M_A - \sqrt{(M_{A-1} + E_x)^2 + k^2}, \mathbf{k}),$$

 $(A-1) - spectator: (\sqrt{(M_{A-1} + E_x)^2 + k^2}, -\mathbf{k}),$
 $A - nucleus, \Sigma: (M_A, \mathbf{0}),$

where E_x is the excitation energy of the rest nucleus depending on the atomic weight (A-1).

The nucleon invariant mass, M_n , is distributed according:

$$M_n^2 = \left[M_A - \sqrt{(M_{A-1} + E_x)^2 + k^2} \right]^2 - k^2.$$

 M_n is typically smaller (and spreaded) than the mass of free nucleon.

Invariant nucleon mass in IAr with 1p1h

Invariant nucleon mass in argon

Invariant nucleon mass in IAr with 1p1h

Invariant nucleon mass in argon (linear scale), MAX \sim 923 GeV, FWHM \sim 200 MeV.

3 2p2h-kinematics

If the nucleon momentum more than k_F (say, $k > 2k_F$), it is supposed that such high momenta can come from the interaction between individual nucleons through their hard-core potential. The kinematics reads:

$$1 - nucleon:$$
 $(\frac{1}{2}[M_A - M_{A-2} - 2E_x], \mathbf{k}),$ $2 - nucleon:$ $(\frac{1}{2}[M_A - M_{A-2} - 2E_x], -\mathbf{k}),$ $(A-2) - spectator:$ $(M_{A-2} + 2E_x, \mathbf{0}),$ $A - nucleus, \Sigma:$ $(M_A, \mathbf{0}),$

where E_x is the excitation energy of the rest nucleus depending on the atomic weight (A-2).

The nucleon invariant mass, M_n , is distributed according:

$$M_n^2 = \frac{1}{4} [M_A - M_{A-2} - 2E_x]^2 - k^2.$$

Invariant nucleon mass in IAr with 2p2h

Invariant nucleon mass in argon (linear scale), MAX \sim 925 MeV, FWHM \sim 200 MeV.

Invariant nucleon mass in IAr with 1p1h and 2p2h

Invariant nucleon mass in argon (linear scale, 1p1h \rightarrow 2p2h at $2k_F$), MAX \sim 923 MeV, FWHM \sim 200 MeV.

Invariant nucleon mass in carbon with 1p1h and 2p2h

Invariant nucleon mass in carbon (linear scale, 1p1h \rightarrow 2p2h at $2k_F$), MAX \sim 911 MeV, FWHM \sim 300 MeV.

Invariant nucleon mass in lead with 1p1h and 2p2h

Invariant nucleon mass in lead (linear scale, 1p1h \rightarrow 2p2h at $2k_F$), MAX \sim 923 MeV, FWHM \sim 140 MeV.

4 Summary

- 1. The initial nucleon state in terms of Lorentz vector is combined for both 1p1h- and 2p2h-kinematics using the nucleon momentum distribution.
- 2. The nucleon invariant mass distribution is shown for both 1p1h- and 2p2h-kinematics, reflecting the nucleon momentum distribution dependence on A.

Back up

V. Grichine
GEANT4 meeting

Fermi momentum vs. atomic weight

Fermi momentum vs. atomic weight for β -stable nuclei. The mean value is 251 MeV (close to GEANT4 value of 250 MeV)

Nucleon momentum distribution in carbon with 1p1h and 2p2h

Nucleon momentum spectra for carbon.

Nucleon momentum distribution in helium with 1p1h and 2p2h

Nucleon momentum spectra for helium.

Nucleon momentum sampling in helium with 1p1h and 2p2h

Geant4 sampling (two Γ -functions) of nucleon momentum spectra for helium.

Nucleon momentum sampling in carbon with 1p1h and 2p2h

Geant4 sampling (two Γ -functions) of nucleon momentum spectra for carbon.

Nucleon momentum sampling in lead with 1p1h and 2p2h

Geant4 sampling (two Γ -functions) of nucleon momentum spectra for lead.