Hadronic Showers in Geant4 10.6

G. Folger, D. Konstantinov, G. Latyshev, I. Razumov, A. Ribon

CERN EP/SFT

CERN/SFT Geant4 meeting, 10 December 2019

Status of G4 10.6.ref00

- Changes in hadronic showers *w.r.t.* G4 10.5 are mainly due to the change in transition region, which is now **[3, 6] GeV**
 - Motivated by thin target (HARP) data
 - @5 GeV, BERT and FTFP similar; @8 & 12 GeV FTFP better
- Seen a few crashes due to FTF
 - Fix ready, will go to the first patch
- Significant CPU slowdown in HP-based physics lists not fully understood
 - Slow down seen in G4 10.5.ref10, when we moved to G4NDL4.6 (based on JEFF) and activated radioactive decay in all HP-based physics lists (this was already the case for half of them)... 2

Pion- showers: FTFP_BERT

G4 10.6 G4 10.5.p01.tr3_6gev ([3, 6] GeV) G4 10.5.p01

Note : conventional Birks treatment (easier and no experimental h/e to fit !)

FTFP BERT : Energy Response

eant-val.cern.ch

GeV

FTFP_BERT : Energy Width

FTFP_BERT : Energy Resolution

FTFP_BERT : Longitudinal Shape

FTFP_BERT : Lateral Shape

Pion- showers: QGSP_BERT

G4 10.6 G4 10.5.p01.tr3_6gev ([3, 6] GeV) G4 10.5.p01

Note : conventional Birks treatment (easier and no experimental h/e to fit !)

QGSP_BERT : Energy Response

QGSP_BERT : Energy Width

QGSP_BERT : Energy Resolution

QGSP_BERT : Longitudinal Shape

Deant-val.cern.ch

Ekin, GeV

Ekin, GeV

ant-val.cern.ch

E^{beam}, GeV

 ${\rm E}_{\rm kin}^{\rm beam,~GeV}\,13$

QGSP_BERT : Lateral Shape

Pion- showers: G4 10.6

FTFP_BERT vs. QGSP_BERT

Note : conventional Birks treatment (easier and no experimental h/e to fit !)

Energy Response

Energy Width

Energy Resolution

Longitudinal Shape

Lateral Shape

KaonOL showers: FTFP_BERT

G4 10.6 G4 10.5.p01

Note : conventional Birks treatment (easier and no experimental h/e to fit !)

FTFP BERT : Energy Response

.

FTFP_BERT : Energy Width

FTFP_BERT : Energy Resolution

- 10.6.cand01

10²

Ekin, GeV

FTFP BERT : Longitudinal Shape

1000

900 800

700

600

500

cm²

Longitudinal shower shape | Beam: kaon0L | Target: TileCal | FTFP_BERT | $\chi^2/n.d.f. = 4.548$

Longitudinal shower shape | Beam: kaon0L | Target: AtlasHEC | FTFP_BERT | $\chi^2/n.d.f. = 3.50344$

K°∟ on Cu-LAr

10

10

---- 10.5.p01

E_{kin}, GeV

10.6.cand01

∠ V ref

0

-0.05

-0.1

10.6.cand01

-e- 10.5.p01

FTFP_BERT : Lateral Shape

Proton showers: FTFP_BERT

G4 10.6 G4 10.5.p01

Note : conventional Birks treatment (easier and no experimental h/e to fit !)

FTFP_BERT : Energy Response

FTFP_BERT : Energy Width

FTFP_BERT : Energy Resolution

FTFP_BERT : Longitudinal Shape

0.04

0.02

-0.02

-0.04

-0.06

10.6.cand01

0

 $\frac{\Delta y}{r_{\text{ref}}}$

Longitudinal shower shape | **Beam**: proton | **Target**: TileCal | FTFP_BERT | $\chi^2/n.d.f. = 1.38953$

Longitudinal shower shape | Beam: proton | Target: AtlasHEC | FTFP_BERT | χ^2 /n.d.f. = 1.98357

10

-e- 10.5.p01

 E_{kin}^{beam} , GeV 31

FTFP_BERT : Lateral Shape

Antiproton showers: FTFP_BERT

G4 10.6 G4 10.5.p01

Note : conventional Birks treatment (easier and no experimental h/e to fit !)

FTFP_BERT : Energy Response

FTFP_BERT : Energy Width

FTFP_BERT : Energy Resolution

FTFP_BERT : Longitudinal Shape

FTFP BERT : Lateral Shape

cern.ch

Ekin, GeV

Conclusions: Hadronic Showers in G4 10.6

- FTFP_BERT 10.6 vs. 10.5 : higher energy response and narrower, in particular for projectile energies between ~5 and ~25 GeV
- **QGSP_BERT** 10.6 *vs.* 10.5 : similar trend as for FTFP_BERT
 - Transition region between FTFP and QGSP is unchanged: [12, 25] GeV
- **QGSP_BERT** *vs.* **FTFP_BERT** : higher energy response, more energy fluctuations, longer and narrower shapes
- Similar trend for **pions**, **kaons** and **nucleons** showers, whereas **antibaryons**' showers stay nearly the same as in G4 10.5
 - For antibaryons, FTFP is used for all energies
- We recommend to fit the **Birks** quenching coefficient from e/h data; else use **FTFP_BERT_ATL** whose showers remain similar as in 10.5
 - Transition region in FTFP_BERT_ATL is unchanged: [9, 12] GeV