Design considerations of a superconducting gantry with alternating-gradient combined-function magnets

Bin Qin, Runxiao Zhao, Xu Liu

Institute of Applied Electromagnetic Engineering
Huazhong University of Science and Technology (HUST)

International Conference on Medical Accelerators and Particle Therapy
Seville, Spain, September 4th, 2019
OUTLINE

I. Introduction of HUST-PTF

II. Design of SC gantry with AG combined-function magnets
 1. Overall considerations
 2. Field imperfections of small-curvature AG-CCTs, and its influence
 3. Design of a hybrid structure degrader

III. Conclusion
Introduction of HUST Proton Therapy Facility

At HUST (Huazhong University of Science and Technology, Wuhan, China), a multi-rooms proton therapy facility based on superconducting cyclotron, is under development.

Main specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator type</td>
<td>SC cyclotron (250 MeV)</td>
</tr>
<tr>
<td>Energy range of ESS</td>
<td>70-240 MeV</td>
</tr>
<tr>
<td>Gantry type</td>
<td>±180 degree, normal conducting</td>
</tr>
<tr>
<td>Scanning method</td>
<td>Downstream, pencil beam spot scanning</td>
</tr>
<tr>
<td>Virtual SAD</td>
<td>2.6 m</td>
</tr>
<tr>
<td>Beam intensity @ Iso-center</td>
<td>0.4 – 5 nA</td>
</tr>
<tr>
<td>Field size</td>
<td>30cm × 30cm</td>
</tr>
<tr>
<td>Image guiding</td>
<td>Cone beam CT</td>
</tr>
</tbody>
</table>

250 MeV / 500nA superconducting cyclotron
One fixed beamline (Horizontal) TR
Two 360 degree Gantry TRs
Degrader and ESS (Energy Selection System) for 70 -240 MeV energy modulation
Beamline layout and resistive gantry

Gantry beamline with downstream scanning:
1. Image optics for better correlation between the iso-center and entrance CP;
2. Beam optics is optimized when considering fringe fields and 2nd order aberrations (COSY INFINITY with ENGE function / FEA-ODE code), and validated by tracking.

Comparison of 2σ beam envelope with Transport, first / second order results after optimization with COSY Infinity.

2σ beam ($\epsilon_{x,y} = 28\pi \cdot \text{mm} \cdot \text{mrad}, \Delta p/p = \pm 0.6\%$) envelope calculated by Transport.
- Kicker magnet for fast beam switch: MnZn ferrite core + Ceramic vacuum chamber; rise/fall time 63 us (measured)
- Central field 1050Gs, field homogeneity 0.5% in GFR (measured)

- Energy degrader: multi-wedge type for continuous and fast energy modulation (70 – 240 MeV, 200ms / step)
Prototype beamline magnets: 60° dipole; L270 mm quadrupole; 30° dipole
- Max. dipole field 1.62T, with integral field homogeneity ± 0.08%
- Max. quadrupole gradient 18T/m, high order harmonics < 5 units

Gantry beamline
- Downstream scanning with field size 30 cm × 30 cm
- Integrated design for magnets, vacuum system, diagnostics and girders.
- #1 gantry beamline will be manufactured and tested in the end of 2019.
OUTLINE

I. Introduction of HUST-PTF

II. Design of SC gantry with AG combined-function magnets
 1. Overall considerations
 2. Field imperfections of small-curvature AG-CCTs, and its influence
 3. Design of a hybrid structure degrader

III. Conclusions
Motivation

- Single room compact PT system becomes attractive for radiotherapy markets: 16 of 44 PT centers under constructions will adopt single-room solutions (from https://www.pt cog.ch)

- SC cyclotrons / synchro-cyclotrons have been applied to PT, however, most of single-room and multi-room PTs employs resistive gantries. SC technology can further suppress both the footprint and weight of gantries.

Present resistive gantry beaml ine of HUST-PTF
- Weight of beaml ine (magnets + girders) ~ 35 tons
- Overall gantry weight: ~ 180 tons
- Footprint: ~ 5m (R) × 8m (L)

A lightweight gantry is considered for future upgrade
Existing schemes of SC gantries (PT)

- **ProNova Super-ferric scheme**
 - Combined super-ferric magnets, +/-3% momentum acceptance
 - Commercial available, 30 tons lightweight gantry

- **Fixed field dipole scheme**
 -- Anthony Huggins, Lucas Brouwer, Weishi Wan, Design and simulation of high momentum acceptance gantries for ion beam therapy, ICAP’18, 2018

- **LBNL / PSI: AG-CCT Scheme**
 - Dipole CCT + AG-CCT, stronger dispersion suppression: +/-10% momentum acceptance;
 - Upstream scanning, larger aperture for the final dipole
 -- W. Wan et al. Beam Optics in Large Aperture Magnets, EuCARD2, 2015
 -- L. Brouwer et al.: Design of an achromatic superconducting magnet for a proton therapy gantry, IEEE TAS, VOL. 27, NO. 4, JUNE 2017

- **PSI combined-function SC magnet scheme:** +/-15% momentum acceptance
 -- Konrad P. Nesteruk. Large momentum acceptance beam optics of a superconducting gantry for proton therapy, CPO-10, 2018
Schematic design of the downstream scanning AG-CCT gantry

Features:
- SC Gantry can be configured as single-room PT or multi-room PT
- **Independent hybrid degrader** installed at the entrance of the gantry (without energy slit, max. 2.6% dp/p @ 70 MeV)
- **Downstream scanning**, avoid large aperture final dipole → reduced fringe field, minor contribution to aberrations.
- SAD ~ 2.0 m, with a compact nozzle

Magnets in gantry beamline
- AG-CCT combined function magnets are used for 2 bending sections: CB1 45 deg.; CB2-A, CB2-B 67.5 deg. **Local dispersion suppression are used to achieve +/-14% momentum acceptance.**
- Q1-Q7 are resistive quadrupoles with small aperture.
SC Gantry optics

\[\vec{p}(\theta) = r\hat{r} + \left[r\cot(\alpha) \sin(\theta) + \frac{\omega}{2\pi} \theta \right] \hat{z} \]

\[\vec{p}(\theta) = r\hat{r} + \left[\frac{r\cot(\alpha)}{2} \sin(2\theta) + \frac{\omega}{2\pi} \theta \right] \hat{z} \]

Dipole CCT Path

Quadrupole CCT Path

Table 1: Lattice parameters for CB1 45° AG-CCT magnet (F-D-F), and CB2-A/CB2-B 67.5° AG-CCT magnet (F-D-F-F)

<table>
<thead>
<tr>
<th>Type</th>
<th>No.</th>
<th>Bending angle</th>
<th>Field index n</th>
</tr>
</thead>
<tbody>
<tr>
<td>45° AG-CCT</td>
<td>#1 (D)</td>
<td>8.2°</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>#2 (F)</td>
<td>28.6°</td>
<td>-25</td>
</tr>
<tr>
<td></td>
<td>#3 (D)</td>
<td>8.2°</td>
<td>25</td>
</tr>
<tr>
<td>67.5° AG-CCT</td>
<td>#1 (F)</td>
<td>9.0°</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>#2 (D)</td>
<td>12.9°</td>
<td>-17.7</td>
</tr>
<tr>
<td></td>
<td>#3 (F)</td>
<td>23.7°</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>#4 (D)</td>
<td>12.9°</td>
<td>-17.7</td>
</tr>
<tr>
<td></td>
<td>#5 (F)</td>
<td>9.0°</td>
<td>17.7</td>
</tr>
</tbody>
</table>
Combined-function multipoles CCT modelling and field calculation

- OPERA-3D: time-consuming for complex multi-layers AG-CCT magnets, based on FEM (finite elements method)

- Due to pure coil induced magnetic fields without iron (ignoring stray field shielding and cross-talk effect), a **self-developed code based on Biot-Savart Law** was written for:
 - Parametric modelling of combined-function CCT magnets (dipole, quadrupole, sextuple CCTs).
 - Fast magnetic field calculation according to various precision requirement.
 - Runge-Kutta particle tracking, Visualization.
Dipole and quadrupole field distortion in curved CCTs

Curvature of curved CCT will break field symmetry along the radius in cross section, and lead to
(1) Small inherent quadrupole field, from dipole CCT

\[b_{2\text{inh}} \approx b_1/(2 \cdot \rho) \]

(2) For quadrupole field of AG-CCT → center deviation & focusing difference in outside and inside radius → nonlinear distortion on beam phase space

- \[e = 50/100 \]
- \[e = 50/250 \]
- \[e = 50/5000 \]

Figure 8.5: The quadrupole-like toroidal harmonic \((n=2)\) is shown for a fixed bore radius \(R\) and increasing major radius \(R_0\). The Legendre polynomials needed for the fields were evaluated using the DTOR algorithm [108]. As the aspect ratio of the torus \(e = R/R_0\) tends to zero, the fields are seen approaching those of a straight cylindrical quadrupole.

A compromise between the larger curvature \((\rho)\) and higher dipole field is needed.
For our case: \(\rho = 1\) m, bore radius = 50 mm, \(b_1 = 2.43\) T
Off center = 2.5 mm

Bz along the central trajectory (67.5 deg. combined-function CCT)

Remnant field of AG-CCT due to curvature effect

Isometric line of \(B_{\text{mod}}\) @ cross section of AG-CCT

One solution is to set a deviation for the central beam trajectory to the distorted quadrupole field center; however, due to the gradient distortion, the beam will have nonlinear focusing effect.

Nonlinear effect on beam phase space

- Remnant dipole field distribution due to quadrupole field distortion in AG-CCT
- Phase ellipse evolution with nonlinear focusing effect, when passing one 67.5 deg. AG-CCT
Parameters of 67.5 deg. AG-CCT

For 67.5 deg. AG-CCT:
Max. dipole field: 2.43T; Max. gradient: 43T/m

@Isocenter: Stray field 5.3Gs (safety limit 5Gs)

<table>
<thead>
<tr>
<th>Table 5 Parameters of the NbTi/Cu strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superconducting wire</td>
</tr>
<tr>
<td>Wire type</td>
</tr>
<tr>
<td>Insulating material</td>
</tr>
<tr>
<td>Bare dimensions/mm</td>
</tr>
<tr>
<td>Insulated dimensions/mm</td>
</tr>
<tr>
<td>Cu:Sc</td>
</tr>
<tr>
<td>RRR(273K/10K)</td>
</tr>
<tr>
<td>I_c (5T, 4.2K)/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6 Current margin at the maximum operating point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>AG-CCT (L1)</td>
</tr>
<tr>
<td>AG-CCT (L2)</td>
</tr>
<tr>
<td>Dipole CCT (L3)</td>
</tr>
<tr>
<td>Dipole CCT (L4)</td>
</tr>
</tbody>
</table>

Characteristic line of monolith NbTi strands
High order aberrations

- 2nd order aberrations has been studied using COSY Infinity. Present results show that aberrations have significant influence on beam optics, especially for large momentum offset situation.

- The original linear optics need be re-optimized in high order situation, and sextupole components will be introduced to minimize the aberrations.
Hybrid structure degrader

- dp/p = ±14% with linear optics; final dp/p = ±10% is assumed → 4 central energy for CCTs

<table>
<thead>
<tr>
<th>Set Energy/MeV</th>
<th>dP/P</th>
<th>dE/E</th>
<th>Emin/MeV</th>
<th>Emax/MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>10.00%</td>
<td>19.26%</td>
<td>60.56</td>
<td>89.44</td>
</tr>
<tr>
<td>105</td>
<td>10.00%</td>
<td>18.99%</td>
<td>85.06</td>
<td>124.94</td>
</tr>
<tr>
<td>145</td>
<td>10.00%</td>
<td>18.66%</td>
<td>117.94</td>
<td>172.06</td>
</tr>
<tr>
<td>205</td>
<td>10.00%</td>
<td>18.21%</td>
<td>167.68</td>
<td>242.32</td>
</tr>
</tbody>
</table>

- dp/p = ±14% with linear optics; final dp/p = ±10% is assumed → 4 central energy for CCTs

Energy Degrader in 3 stages:

- 170~240MeV: Wedge
- 120~170MeV: Wedge + Block1
- 70~120MeV: Wedge + Block1 + Block2

Beneficial:
- Higher transmission, for low-z materials usage of B1, B2 (B4C, Be)
- Lighter wedge (~1/4 of full wedge), higher motion speed
For continuous energy degrading:

- Block1 (B4C): 250 MeV → 180 MeV
- Block1 + Block2: 250 MeV → 130 MeV

Energy Spread After Degrader: 70, 120, 170, 240 MeV
Transmission optimization of the hybrid degrader

Compared to multi-wedge case:
- 39~50% increase (relatively) for 70-120 MeV
- 24~30% increase (relatively) for 130-170 MeV

After Collimator #2:
- Beam energy: 70-240 MeV
- r.m.s. beam emittance: 7π mm*mrad
Beneficial from natural large energy spread

Larger energy spread \Longrightarrow Larger distal fall-off \Longrightarrow Range straggling: $\frac{dR}{R} = 3.3\frac{dE}{E}$

- Larger distance between successive energy layers is possible
- Reduce overall energy change time

SOBP Simulation (using TOPAS)
- Proton Energy: 120MeV - 170 MeV ~ Range(10.5cm - 19.5cm)
- Depth of Energy Layers: 10mm \rightarrow Energy Step: 11
- W98=78mm W(d80→d20)=6.62mm

Energy Spread After Col#2
For future research and development, we proposed a combined function AG-CCT gantry beamline, with large momentum acceptance and smaller footprint.

Linear optics and influence of field imperfection from small-curvature AG-CCTs were studied. Considering field complexity and large momentum offset, high order aberrations with fringe field effect need be investigated and optimized.

Combination of large momentum acceptance and natural energy spread during degrading (without energy slit), may lead to potential applications on fast 3D scanning.
Thank you for your attention!

Bin Qin, bin.qin@hust.edu.cn

Posters, this conference

Xu Liu et al., Design of a fast energy degrader for a compact superconducting gantry with large momentum acceptance

Runxiao Zhao et al., Design and optimization of beam optics for a superconducting gantry