

Design considerations of a superconducting gantry with alternating-gradient combined-function magnets

Bin Qin, Runxiao Zhao, Xu Liu

Institute of Applied Electromagnetic Engineering Huazhong University of Science and Technology (HUST)

International Conference on Medical Accelerators and Particle Therapy Seville, Spain, September 4th, 2019

OUTLINE

- **Introduction of HUST-PTF**
- **II.** Design of SC gantry with AG combined-function magnets
 - 1. Overall considerations
 - 2. Field imperfections of small-curvature AG-CCTs, and its influence

3. Design of a hybrid structure degrader **III.** Conclusion

Introduction of HUST Proton Therapy Facility

At HUST (Huazhong University of Science and **Technology, Wuhan, China)**, a multi-rooms proton therapy facility based on superconducting cyclotron, is under development.

Main specifications

Specification	Value
Accelerator type	SC cyclotron (250 MeV)
Energy range of ESS	70-240 MeV
Gantry type	±180 degree, normal conducting
Scanning method	Downstream, pencil beam spot scanning
Virtual SAD	2.6 m
Beam intensity @ Iso-center	0.4 – 5 nA
Field size	30cm×30cm
Image guiding	Cone beam CT

250 MeV / 500nA superconducting cyclotron

HUST-PTF System View

Degrader and ESS (Energy Selection System) for 70 -240 MeV energy modulation

Huazhong University of Science & Technology

Nozzle & Treatment System Pencil beam spot scanning Image guiding system with orthogonal CBCT

One fixed beamline (Horizontal) TR

Two 360 degree Gantry TRs

Beamline layout and resistive gantry

 2σ beam ($\epsilon_{x,y} = 28\pi \cdot \text{mm} \cdot \text{mrad}, \Delta p/p = \pm 0.6\%$) envelope calculated by Transport

Beamline layout and resistive gantry

- Kicker magnet for fast beam switch : MnZn ferrite core + Ceramic vacuum chamber; rise / fall time 63 us \succ (measured)
- Central field 1050Gs, field homogeneity 0.5% in GFR (measured) \geq

Energy degrader: multi-wedge type for continuous and fast energy modulation (70 – 240 MeV, 200ms / step)

Beamline layout and resistive gantry

Prototype beamline magnets: 60° dipole; L270 mm quadrupole; 30° dipole

 \blacktriangleright Max. dipole field 1.62T, with integral field homogeneity \pm 0.08%

Max. quadrupole gradient 18T/m, high order harmonics < 5 units</p>

Huazhong University of Science & Technology

Gantry beamline

m

- > Downstream scanning with field size 30 cm imes 30 cm
- Integrated design for magnets, vacuum system, diagnostics and girders.
- #1 gantry beamline will be manufactured and tested in the end of 2019.

OUTLINE

I. Introduction of HUST-PTF

- **Design of SC gantry with AG combined-function II**. magnets
 - 1. Overall considerations
 - 2. Field imperfections of small-curvature AG-CCTs, and its influence

3. Design of a hybrid structure degrader **III.Conclusions**

Motivation

Single room compact PT system becomes attractive for radiotherapy markets: 16 of 44 PT centers under constructions will adopt single-room solutions (from https://www.ptcog.ch)

SC cyclotrons / synchro-cyclotrons have been applied to PT, however, most of single-room and multi-room PTs employs resistive gantries. SC technology can further suppress both the footprint and weight of gantries.

Present resistive gantry beamline of HUST-PTF -- Weight of beamline (magnets + girders) ~ 35 tons -- Overall gantry weight: ~ 180 tons -- Footprint: \sim 5m (R) \times 8m (L)

A lightweight gantry is considered for future upgrade

Huazhong University of Science & Technology

Schematic design of the downstream scanning AG-CCT gantry

<u>Magnets in gantry beamline</u>

□ AG-CCT combined function magnets are used for 2 bending sections: CB1 45 deg.; CB2-A, CB2-B 67.5 deg. Local dispersion suppression are used to achieve +/-14% momentum acceptance. **Q1-Q7** are resistive quadrupoles with small aperture.

Features:

- > SC Gantry can be configured as single-room PT or multi-room PT
- > Independent hybrid degrader installed at the entrance of the gantry (without energy slit, max. 2.6% dp/p @ 70 MeV)
- > **Downstream scanning**, avoid large aperture final dipole \rightarrow reduced fringe field, minor contribution to aberrations.
- > SAD ~ 2.0 m, with a compact nozzle

SC Gantry optics

Table 1: Lattice parameters for CB1 45° AG-CCT magnet (F-D-F), and CB2-A/CB2-B 67.5° AG-CCT magnet (F-D-F-D-F)

Туре	No.	Bending angle	Field index n
45° AG-CCT	#1 (D)	8.2°	25
	#2 (F)	28.6°	-25
	#3 (D)	8.2°	25
67.5° AG-CCT	#1 (F)	9.0°	17.7
	#2 (D)	12.9°	-17.7
	#3 (F)	23.7°	17.7
	#4 (D)	12.9°	-17.7
	#5 (F)	9.0°	17.7

Dipole CCT Path

 $\vec{p}(\theta) = r\hat{r} + [rcot(\alpha)]$

Quadrupole CC1 $\vec{p}(\theta) = r\hat{r} + \left[\frac{r\cot(\alpha)}{2}\right]$

Demonstration of a four-layer AG-CCT magnet \geq

$$f(x) \sin(\theta) + \frac{\omega}{2\pi} \theta] \hat{x}$$

$$f(x) = \sin(2\theta) + \frac{\omega}{2\pi} \theta] \hat{x}$$

$$f(x) = \sin(2\theta) + \frac{\omega}{2\pi} \theta] \hat{x}$$

Combined-function multipoles CCT modelling and field calculation

- □ OPERA-3D: time-consuming for complex multi-layers AG-CCT magnets, based on FEM (finite elements method)
- Due to pure coil induced magnetic fields without iron (ignoring stray field) shielding and cross-talk effect), a self-developed code based on Biot-**Savart Law** was written for:
 - Parametric modelling of combined-function CCT magnets (dipole, quadrupole, sextuple CCTs).
 - ✓ Fast magnetic field calculation according to various precision requirement.
 - Runge-Kutta particle tracking, Visualization.

13

Dipole and quadrupole field distortion in curved CCTs

Curvature of curved CCT will break field symmetry along the radius in cross section, and lead to (1) Small inherent quadrupole field, from dipole CCT

 $b_2^{inh} \approx b_1/(2 \cdot \rho)$

(2) For quadrupole field of AG-CCT \rightarrow center deviation & focusing difference in outside and inside radius \rightarrow nonlinear distortion on beam phase space

Lucas Nathan Brouwer, Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy, PhD Dissertation, UC Berkeley, 2015.

larger Off center = 2.5 mm

Nonlinear effect on beam phase space

• One solution is to set a deviation for the central beam trajectory to the distorted quadrupole field center; □ However, due to the gradient distortion, the beam will have nonlinear focusing effect

Phase ellipse evolution with nonlinear focusing effect, when passing one 67.5 deg. AG-CCT

Parameters of 67.5 deg. AG-CCT

For 67.5 deg. AG-CCT: Max. dipole field: 2.43T; Max. gradient: 43T/m

Superconducting wire	Parameter	
Wire type	Monolith	
Insulating material	Formvar	
Bare dimensions/mm	1.04	
Insulated dimensions/mm	1.10	
Cu:Sc	2.3	
RRR(273K/10K)	≥100	
<i>I_c</i> (5T, 4.2K)/A	≥630	

Table 5 Parameters of the NbTi/Cu strand

Table 6 Current margin at the maximum operating point

Туре	I/str.(A)	Str.	\mathbf{B}_{cond}	Margin
AG-CCT (L1)	400	14	4.2T	24%
AG-CCT (L2)	400	14	4.2T	24%
Dipole CCT (L3)	515	12	3.73T	21%
Dipole CCT (L4)	515	12	3.36T	26%

Characteristic line of monolith NbTi strands

16

- ¹2nd order aberrations has been studied using COSY Infinity. Present results show that aberrations have significant infulence on beam optics, especially for large momementum offset situation.
- The original linear optics need be re-optimized in high order situation, and sextupole components will be introduced to minimize the aberrations.

Hybrid structure degrader

 \Box dp/p=±14% with linear optics; final dp/p=±10% is assumed \rightarrow 4 central energy for CCTs

Set Energy/MeV	dP/P	dE/E	Emin/MeV	Emax/MeV
75	10.00%	19.26%	60.56	89.44
105	10.00%	18.99%	85.06	124.94
145	10.00%	18.66%	117.94	172.06
205	10.00%	18.21%	167.68	242.32

Beneficial: □ Higher transmission, for low-z materials usage of B1,B2 (B4C, Be) □ Lighter wedge (~1/4 of full wedge), higher motion speed

Huazhong University of Science & Technology

Energy Degrader in 3 stages:

- □ 170~240MeV: Wedge
- □ 120~170MeV: Wedge + Block1
 - 70~120MeV: Wedge + Block1 + Block2

Hybrid structure degrader

For continuous energy degrading:

□ Block1(B4C): 250MeV→180MeV

□ Block1+Block2: 250MeV→130MeV

Energy Spread After Degrader: 70, 120, 170, 240 MeV

Transmission optimization of the hybrid degrader

Huazhong University of Science & Technology

After Collimator #2: Beam energy: 70-240MeV r.m.s. beam emittance: 7pi mm*mrad

(m)

□ 39~50% increase(relatively) for 70-120MeV □ 24~30% increase(relatively) for 130-170MeV

Beneficial from natural large energy spread

Huazhong University of Science & Technology

D Proton Energy: 120MeV -170 MeV ~ Range(10.5cm - 19.5cm) □ W98=78mm W(d80→d20)=6.62mm

- For future research and development, we proposed a combined function AG-CCT gantry beamline, with large momentum acceptance and smaller footprint.
- Linear optics and influence of field imperfection from small-curvature AG-CCTs were studied. Considering field complexity and large momentum offset, high order aberrations with fringe field effect need be investigated and optimized.
- Combination of large momentum acceptance and natural energy spread during degrading (without) energy slit), may lead to potential applications on fast 3D scanning.

Bin Qin, bin.qin@hust.edu.cn

Posters, this conference

Xu Liu et al., Design of a fast energy degrader for a compact superconducting gantry with large momentum acceptance Runxiao Zhao et al., Design and optimization of beam optics for a superconducting gantry

Thank you for your attention!