

Design considerations of a superconducting gantry with alternating-gradient combined-function magnets

Bin Qin, Runxiao Zhao, Xu Liu

Institute of Applied Electromagnetic Engineering Huazhong University of Science and Technology (HUST)

International Conference on Medical Accelerators and Particle Therapy Seville, Spain, September 4th, 2019

OUTLINE

- **I. Introduction of HUST-PTF**
- **II. Design of SC gantry with AG combined-function magnets**
	- 1. Overall considerations
	- 2. Field imperfections of small-curvature AG-CCTs, and its influence

3. Design of a hybrid structure degrader **III. Conclusion**

Introduction of HUST Proton Therapy Facility

System View 250 MeV / 500nA superconducting cyclotron

HUST-PTF

Degrader and ESS (Energy Selection System) for 70 -240 MeV energy modulation

Huazhong University of Science & Technology

Nozzle & Treatment System O Pencil beam spot scanning • Image guiding system with orthogonal CBCT

One fixed beamline (Horizontal) TR

Two 360 degree **Gantry TRs**

 At HUST (Huazhong University of Science and Technology, Wuhan, China), a multi-rooms proton therapy facility based on superconducting cyclotron, is under development.

Main specifications

Beamline layout and resistive gantry

2σ beam ($\epsilon_{x,y} = 28\pi \cdot \text{mm} \cdot \text{mrad}$, $\Delta p/p = \pm 0.6\%$) envelope calculated by Transport

- > Kicker magnet for fast beam switch : MnZn ferrite core + Ceramic vacuum chamber; rise / fall time 63 us **(measured)**
- **Central field 1050Gs, field homogeneity 0.5% in GFR (measured)**

 Energy degrader: multi-wedge type for continuous and fast energy modulation (70 – 240 MeV, 200ms / step)

Beamline layout and resistive gantry

Prototype beamline magnets: 60[∘] dipole; L270 mm quadrupole; 30[∘] dipole

 \triangleright Max. dipole field 1.62T, with integral field homogeneity \pm 0.08%

Max. quadrupole gradient 18T/m, high order harmonics < 5 units

Huazhong University of Science & Technology

Beamline layout and resistive gantry

- Downstream scanning with field size 30cm \times 30cm
- **Integrated design** for magnets, vacuum system, diagnostics and girders.
- **#1 gantry beamline will be manufactured and tested in the end of 2019.**

Gantry beamline

HUDT

OUTLINE

I. Introduction of HUST-PTF

- **II. Design of SC gantry with AG combined-function magnets**
	- 1. Overall considerations
	- 2. Field imperfections of small-curvature AG-CCTs, and its influence

3. Design of a hybrid structure degrader **III.Conclusions**

Motivation

Single room compact PT system becomes attractive for radiotherapy markets: **16 of 44 PT centers under constructions will adopt single-room solutions** (from https://www.ptcog.ch)

■ SC cyclotrons / synchro-cyclotrons have been applied to PT, however, most of single-room and multi-room PTs employs resistive gantries. **SC technology can further suppress both the footprint and weight of gantries.**

Present resistive gantry beamline of HUST-PTF -- Weight of beamline (magnets + girders) ~ 35 tons -- Overall gantry weight: ~ 180 tons -- Footprint: ~ 5m (R) × 8m (L)

A lightweight gantry is considered for future upgrade

Huazhong University of Science & Technology

Schematic design of the downstream scanning AG-CCT gantry

Magnets in gantry beamline

■ AG-CCT combined function magnets are used for 2 bending sections: CB1 45 deg. ; CB2-A, CB2-B 67.5 deg. **Local dispersion suppression are used to achieve +/-14% momentum acceptance.** □ Q1-Q7 are resistive quadrupoles with small aperture.

Features:

- \triangleright SC Gantry can be configured as single-room PT or multi-room PT
- **Independent hybrid degrader** installed at the entrance of the gantry (without energy slit, max. 2.6% dp/p @ 70 MeV)
- **Downstream scanning**, avoid large aperture final dipole \rightarrow reduced fringe field, minor contribution to aberrations.
- **SAD ~ 2.0 m**, with a compact nozzle

SC Gantry optics

Table 1: Lattice parameters for CB1 45° AG-CCT magnet (F-D-F), and CB2-A/CB2-B 67.5° AG-CCT magnet (F-D-F-D-F)

with

\n
$$
t(\alpha)\sin(\theta) + \frac{\omega}{2\pi}\theta \hat{z}
$$
\nCorPath

\n
$$
\frac{t(\alpha)}{2}\sin(2\theta) + \frac{\omega}{2\pi}\theta \hat{z}
$$
\nThus, $t(\alpha)$

Dipole CCT Path

 $p(\theta) = r\ddot{r} + [rect(\alpha) \sin(\theta) +$

$p(\theta) = r\ddot{r} + \mu$ $rcot(\alpha$ **Quadrupole CCT**

Huazhong University of Science & Technology **AND TO BE**

Demonstration of a four-layer AG-CCT magnet

Combined-function multipoles CCT modelling and field calculation

- OPERA-3D: time-consuming for complex multi-layers AG-CCT magnets, based on FEM (finite elements method)
- □ Due to pure coil induced magnetic fields without iron (ignoring stray field shielding and cross-talk effect), **a self-developed code based on Biot-Savart Law** was written for:
	- \checkmark Parametric modelling of combined-function CCT magnets (dipole, quadrupole, sextuple CCTs).
	- \checkmark Fast magnetic field calculation according to various precision requirement.
	- \checkmark Runge-Kutta particle tracking, Visualization.

Lucas Nathan Brouwer, Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy, PhD Dissertation, UC Berkeley, 2015.

Dipole and quadrupole field distortion in curved CCTs

(2) For quadrupole field of AG-CCT \rightarrow center deviation & focusing difference in outside and inside radius \rightarrow nonlinear distortion on beam phase space

Curvature of curved CCT will break field symmetry along the radius in cross section, and lead to (1) Small inherent quadrupole field, from dipole CCT

 $|b_2$ ^{inh} $\approx b_1/(2 \cdot \rho)|$

Off center = 2.5 mm

Nonlinear effect on beam phase space

 \Box One solution is to set a deviation for the central beam trajectory to the distorted quadrupole field center; \Box However, due to the gradient distortion, the beam will have nonlinear focusing effect

For 67.5 deg. AG-CCT: Max. dipole field: 2.43T; Max. gradient: 43T/m

Characteristic line of monolith NbTi strands

Table 5 Parameters of the NbTi/Cu strand

Table 6 Current margin at the maximum operating point

Type	I/str.(A)	Str.	B_{cond}	Margin
$AG-CCT(L1)$	400	14	4.2T	24%
$AG-CCT (L2)$	400	14	4.2T	24%
Dipole CCT (L3)	515	12	3.73T	21%
Dipole CCT $(L4)$	515	12	3.36T	26%

Parameters of 67.5 deg. AG-CCT

- □2nd order aberrations has been studied using COSY Infinity. Present results show that aberrations have significant infulence on beam optics, especially for large momementum offset situation.
- **Outa** The original linear optics need be re-optimized in high order situation, and sextupole components will be introduced to minimize the aberrations.

Hybrid structure degrader

Beneficial: Higher transmission, for low-z materials usage of B1,B2 (B4C, Be) Lighter wedge (~1/4 of full wedge), higher motion speed

Huazhong University of Science & Technology

 dp/p=±14% with linear optics; final dp/p=±10% is \rightarrow 4 **central energy** for **CCTs**

- **170~240MeV: Wedge**
- **120~170MeV: Wedge + Block1**
- **70~120MeV: Wedge + Block1 +Block2**

Energy Degrader in 3 stages:

Block1(B4C): 250MeV180MeV

Block1+Block2:250MeV130MeV

For continuous energy degrading:

Energy Spread After Degrader: 70, 120, 170, 240 MeV

Hybrid structure degrader

Transmission optimization of the hybrid degrader

39~50% increase(relatively) for 70-120MeV 24~30% increase(relatively) for 130-170MeV

Huazhong University of Science & Technology

After Collimator #2: • Beam energy: 70-240MeV • r.m.s. beam emittance: 7pi mm*mrad

MIDT

Beneficial from natural large energy spread

Huazhong University of Science & Technology

$\frac{dR}{dt}$

\square Proton Energy: 120MeV -170 MeV ~ Range(10.5cm - 19.5cm) \Box W98=78mm W(d80 \rightarrow d20)=6.62mm

- **For future research and development, we proposed a combined function AG-CCT gantry beamline, with large momentum acceptance and smaller footprint.**
- **Linear optics and influence of field imperfection from small-curvature AG-CCTs were studied. Considering field complexity and large momentum offset, high order aberrations with fringe field effect need be investigated and optimized.**
- **Combination of large momentum acceptance and natural energy spread during degrading (without energy slit), may lead to potential applications on fast 3D scanning.**

Thank you for your attention!

Bin Qin, bin.qin@hust.edu.cn

Posters, this conference

Xu Liu et al., Design of a fast energy degrader for a compact superconducting gantry with large momentum acceptance Runxiao Zhao et al., Design and optimization of beam optics for a superconducting gantry