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Gantry for proton therapy

Main components:
• Magnets (bending/focusing) 
• Beam scanning system (downstream/upstream/combined) 
• Beam instrumentation devices 
• Vacuum and cooling systems  
• Mechanical support system 
• Drive mechanism

Typical proton gantry:
• Max. 250 MeV kinetic energy 
• Isocentric (centre of min. sphere crossed by beam axis) 
• Delivering beam to a supine patient on a rotating table 
• 180/360 deg rotation capability 
• Normal-conducting 
• Occupies volume of 8m x 8m x 8m

Imaging prior to the treatment:
• MRI  
• X-ray CT

H Owen, R MacLay, K Peach, S Smith. Hadron accelerators for radiotherapy, 2014.
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• Beam instrumentation devices 
• Vacuum and cooling systems  
• Mechanical support system 
• Drive mechanism

Typical proton gantry:
• Max. 250 MeV kinetic energy 
• Isocentric (centre of min. sphere crossed by beam axis) 
• Delivering beam to a supine patient on a rotating table 
• 180/360 deg rotation capability 
• Normal-conducting 
• Occupies volume of 8m x 8m x 8m

Imaging prior to the treatment:
• MRI  
• X-ray CT

Conversion from HU to effective electron density: proton range uncertainty of up to 3.5%

H Owen, R MacLay, K Peach, S Smith. Hadron accelerators for radiotherapy, 2014.
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Proton computed tomography

W Sadrozinski, R P Johnson, S Macafee, A Plumb, D Steinberg, A Zatserklyaniy, V A Bashkirov, R F Hurley, and R W Schulte. 
Development of a head scanner for proton CT. Nuclear Inst. and Methods in Physics Research, A, 699:205–210, 2012. 

Proton CT:
• Proposed in 1963, not available in clinics yet 
• Proton-tracking (detecting energy deposition and trajectories of individual particles) 
• Proton-integrating (measuring integrated energy deposition)

Proton CT scan of head:
• 108 protons (~0.2 pA) compared to 1011 protons for a single treatment fraction 
• 1.4 mGy radiological dose compared to 50 mGy for an X-ray CT
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W Sadrozinski, R P Johnson, S Macafee, A Plumb, D Steinberg, A Zatserklyaniy, V A Bashkirov, R F Hurley, and R W Schulte. 
Development of a head scanner for proton CT. Nuclear Inst. and Methods in Physics Research, A, 699:205–210, 2012. 

Proton CT:
• Proposed in 1963, not available in clinics yet 
• Proton-tracking (detecting energy deposition and trajectories of individual particles) 
• Proton-integrating (measuring integrated energy deposition)

Proton CT scan of head:
• 108 protons (~0.2 pA) compared to 1011 protons for a single treatment fraction 
• 1.4 mGy radiological dose compared to 50 mGy for an X-ray CT

Protons ranges in A-150 tissue equivalent plastic:
250 MeV: ~33.5 cm 
330 MeV: ~53.1 cm

51 cm (F) / 45 cm (M)

38 cm (F) / 40 cm (M)
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Cyclinac at the Christie Hospital

Proton Therapy Centre at the Christie Hospital in Manchester:
• Opened in 2018 
• 80 patients treated 
• 3 treatment rooms, 1 research room 
• 254 MeV SC Varian cyclotron

C 1 2 3 pCT

BOOSTER LINAC
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Cyclinac at the Christie Hospital

Proton Therapy Centre at the Christie Hospital in Manchester:
• Opened in 2018 
• 80 patients treated 
• 3 treatment rooms, 1 research room 
• 254 MeV SC Varian cyclotron

C 1 2 3 pCT

BOOSTER LINAC

ProBE: Proton Boosting Extension for Imaging and Therapy:
• 250 MeV to 350 MeV 
• Two 54 V/m S-band structures 
• Less than 3 m long 
• Before the research room 
• Frequency mismatch between cyclotron/linac RF systems - 

large beam losses (more than 90%) 
• Beam losses not problematic for pCT (low beam currents)

R Apsimon et al, Coupled longitudinal and transverse beam dynamics studies for hadron therapy linacs, 2017.
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Proton Therapy Centre at the Christie Hospital in Manchester:
• Opened in 2018 
• 80 patients treated 
• 3 treatment rooms, 1 research room 
• 254 MeV SC Varian cyclotron

C 1 2 3 pCT

BOOSTER LINAC

pCT gantry requirements:
• 2.84 Tm beam rigidity for 330 MeV (2.43 Tm for 250 MeV) 
• Source-to-axis distance: min. 2 m 
• Downstream pencil beam scanning system 
• Occupying the space of a conventional treatment gantry

ProBE: Proton Boosting Extension for Imaging and Therapy:
• 250 MeV to 350 MeV 
• Two 54 V/m S-band structures 
• Less than 3 m long 
• Before the research room 
• Frequency mismatch between cyclotron/linac RF systems - 

large beam losses (more than 90%) 
• Beam losses not problematic for pCT (low beam currents)

R Apsimon et al, Coupled longitudinal and transverse beam dynamics studies for hadron therapy linacs, 2017.
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Superconducting gantry

Advantages:
• Weight reduction (300t at NIRS vs 600t at HIT for carbon ions, 

25t ProNova vs 200t PSI Gantry 2) 
• Size reduction for carbon ion therapy / pCT  

(for protons mostly dictated by beam optics and SAD) 
• Footprint and cost reduction 
• Lower power consumption (in SC dipoles comes mainly from 

AC losses, but refrigeration power needed) 
• Combined function magnets isocentre
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Challenges:
• Strong magnetic fields (stray fields, max. 0.5 mT at isocentre) 
• Slower ramping (high energy acceptance gantries such - 
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Example in proton therapy: ProNova Solutions SC360
• 250 MeV protons 
• Radius: more than 4 m, length: less than 5 m 
• No considerable size reduction (235 m3 compared to 250 m3 

Gantry 2 at PSI) 
• Max. magnetic field 4 T in superconducting dipoles

Critical surface of NbTi (P. Ferracin, JUAS 2017)
L Bottura, A practical fit for the critical surface of NbTi, 1999.
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Beam optics design

Basic gantry parameters

Length of dipole Type A 0.6 m

Integrated field over physical length (A) 3.0 T

Length of dipole Type B 0.66 m

Integrated field over physical length (B) 3.3 T

Maximum quadrupole coefficient 27 T/m

Gantry length 8 m

Gantry radius 4.5 m

Source-to-axis distance > 2 m8 m

4.
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m

SC DIPOLES:
3.0 T, 37 deg

SC DIPOLES:
3.3 T, 41 deg

NC QUADRUPOLES

2.
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m
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Beam optics design
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Energy degrader
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Canted cosine theta magnet

Conductor layers are wound such that: 
• Transverse field components sum 
• Solenoidal field components cancelII
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S. Caspi, A 16T Canted-Cosine-Theta (CCT) An option for the FCC, 2015
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• Each conductor sits in its own channel; 
• Channels separated by the ribs (transferring 
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S. Caspi, A 16T Canted-Cosine-Theta (CCT) An option for the FCC, 2015
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Canted cosine theta magnet

Conductor layers are wound such that: 
• Transverse field components sum 
• Solenoidal field components cancel
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CCT cross section:
• Each conductor sits in its own channel; 
• Channels separated by the ribs (transferring 

Lorentz forces to the spar)

II
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Advantages of a CCT magnet:
• No or little pre-stress required (no coil movement) 
• Any harmonics or superposition of harmonics (combined-function) 
• Lower number of components compared to i.e. sector magnet 
• Lower cost

S. Caspi, A 16T Canted-Cosine-Theta (CCT) An option for the FCC, 2015
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Canted cosine theta magnet
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Design parameters:
• Bore radius 
• Physical length 
• Magnetic field 
• Rib thickness in the midplane 
• Wire: material, dimensions, number of wires in the channel 
• Number of layers 
• Current density 
• Skew angle
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CCT dipole main coils

Dipole parameters

Tilt angle of the coil 31.8 deg

Length of the magnet 0.52 m

Midplane rib thickness 0.3 mm

Wire material NbTi

Wire non-Cu/Cu raeo 0.51

Wire diameter 0.825 mm



!12

Dipole parameters

Tilt angle of the coil 31.8 deg

Length of the magnet 0.52 m

Midplane rib thickness 0.3 mm

Wire material NbTi

Wire non-Cu/Cu raeo 0.51

Wire diameter 0.825 mm

PASSIVE SHIELDING ACTIVE SHIELDING

CCT dipole shielding
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CCT dipole shielding
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CCT dipole shielding

Passive shielding dipole parameters

Eng. current [A] 268 A

Peak field in the conductor 4.2 T

Number of wires 8x2

Yoke inner radius 74 mm

Yoke weight 270 kg

Total length of SC strand 1.14 km

PASSIVE SHIELDING ACTIVE SHIELDING
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CCT dipole shielding

Passive shielding dipole parameters

Eng. current [A] 268 A

Peak field in the conductor 4.2 T

Number of wires 8x2

Yoke inner radius 74 mm

Yoke weight 270 kg

Total length of SC strand 1.14 km

Ac2ve shielding dipole parameters

Eng. current [A] 283 A

Peak field in the conductor 5.0 T

Number of wires 11x2

Inner radius of the sh. coil 220 mm

Tilt angle of sh. coil 62.2 deg

Total length of SC strand 2.74 km
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• Heavier 
• More efficient stray fields shielding

• Larger cryostat, larger cold mass 
• More conductor 
• Worse stray fields cancellation

0.5 mT iso-valued surface



Next steps:
• Energy degrader integration into the gantry 
• Collimation system  
• Lower dispersion - larger energy acceptance of the system 
• Quadrupole gradient incorporation to the final bending section dipoles

Summary

Conclusions:
• Compact gantry capable of transporting protons for therapy and imaging 
• Superconducting NbTi CCT dipoles with passive shielding (iron yoke) 
• Single block boron carbide energy degrader for higher particle transmission

This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Marie Skłodowska-Curie 

grant agreement No 675265, OMA - Optimization of Medical Accelerators.
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