Superconducting gantry for proton therapy and imaging

Ewa Oponowicz, Hywel Owen The University of Manchester/The Cockcroft Institute

OMA International Conference on Medical Accelerators and Particle Therapy CNA, Seville 4-6 September 2019

Main components:

- Magnets (bending/focusing)
- Beam scanning system (downstream/upstream/combined)
- Beam instrumentation devices
- Vacuum and cooling systems
- Mechanical support system
- Drive mechanism

Typical proton gantry:

- Max. 250 MeV kinetic energy
- Isocentric (centre of min. sphere crossed by beam axis)
- Delivering beam to a supine patient on a rotating table
- 180/360 deg rotation capability
- Normal-conducting
- Occupies volume of 8m x 8m x 8m

Imaging prior to the treatment:

- MRI
- X-ray CT

H Owen, R MacLay, K Peach, S Smith. Hadron accelerators for radiotherapy, 2014.

Main components:

- Magnets (bending/focusing)
- Beam scanning system (downstream/upstream/combined)
- Beam instrumentation devices
- Vacuum and cooling systems
- Mechanical support system
- Drive mechanism

Typical proton gantry:

- Max. 250 MeV kinetic energy
- Isocentric (centre of min. sphere crossed by beam axis)
- Delivering beam to a supine patient on a rotating table
- 180/360 deg rotation capability
- Normal-conducting
- Occupies volume of 8m x 8m x 8m

Imaging prior to the treatment:

- MRI
- X-ray CT

H Owen, R MacLay, K Peach, S Smith. Hadron accelerators for radiotherapy, 2014.

Conversion from HU to effective electron density: proton range uncertainty of up to 3.5%

W Sadrozinski, R P Johnson, S Macafee, A Plumb, D Steinberg, A Zatserklyaniy, V A Bashkirov, R F Hurley, and R W Schulte. Development of a head scanner for proton CT. Nuclear Inst. and Methods in Physics Research, A, 699:205–210, 2012.

Proton CT:

- Proposed in 1963, not available in clinics yet
- Proton-tracking (detecting energy deposition and trajectories of individual particles)
- Proton-integrating (measuring integrated energy deposition)

Proton CT scan of head:

- 10⁸ protons (~0.2 pA) compared to 10¹¹ protons for a single treatment fraction
- 1.4 mGy radiological dose compared to 50 mGy for an X-ray CT

W Sadrozinski, R P Johnson, S Macafee, A Plumb, D Steinberg, A Zatserklyaniy, V A Bashkirov, R F Hurley, and R W Schulte. Development of a head scanner for proton CT. Nuclear Inst. and Methods in Physics Research, A, 699:205–210, 2012.

Proton CT:

- Proposed in 1963, not available in clinics yet
- Proton-tracking (detecting energy deposition and trajectories of individual particles)
- Proton-integrating (measuring integrated energy deposition)

Proton CT scan of head:

- 10⁸ protons (~0.2 pA) compared to 10¹¹ protons for a single treatment fraction
- 1.4 mGy radiological dose compared to 50 mGy for an X-ray CT

Protons ranges in A-150 tissue equivalent plastic:

250 MeV: ~33.5 cm 330 MeV: ~53.1 cm

Cyclinac at the Christie Hospital

Proton Therapy Centre at the Christie Hospital in Manchester:

- Opened in 2018
- 80 patients treated
- 3 treatment rooms, 1 research room
- 254 MeV SC Varian cyclotron

Cyclinac at the Christie Hospital

R Apsimon et al, Coupled longitudinal and transverse beam dynamics studies for hadron therapy linacs, 2017.

Proton Therapy Centre at the Christie Hospital in Manchester:

- Opened in 2018
- 80 patients treated
- 3 treatment rooms, 1 research room
- 254 MeV SC Varian cyclotron

ProBE: Proton Boosting Extension for Imaging and Therapy:

- 250 MeV to 350 MeV
- Two 54 V/m S-band structures
- Less than 3 m long
- Before the research room
- Frequency mismatch between cyclotron/linac RF systems large beam losses (more than 90%)
- Beam losses not problematic for pCT (low beam currents)

Cyclinac at the Christie Hospital

R Apsimon et al, Coupled longitudinal and transverse beam dynamics studies for hadron therapy linacs, 2017.

Proton Therapy Centre at the Christie Hospital in Manchester:

- Opened in 2018
- 80 patients treated
- 3 treatment rooms, 1 research room
- 254 MeV SC Varian cyclotron

ProBE: Proton Boosting Extension for Imaging and Therapy:

- 250 MeV to 350 MeV
- Two 54 V/m S-band structures
- Less than 3 m long
- Before the research room
- Frequency mismatch between cyclotron/linac RF systems large beam losses (more than 90%)
- Beam losses not problematic for pCT (low beam currents)

pCT gantry requirements:

- 2.84 Tm beam rigidity for 330 MeV (2.43 Tm for 250 MeV)
- Source-to-axis distance: min. 2 m
- Downstream pencil beam scanning system
- Occupying the space of a conventional treatment gantry

Advantages:

- Weight reduction (300t at NIRS vs 600t at HIT for carbon ions, 25t ProNova vs 200t PSI Gantry 2)
- **Size reduction** for carbon ion therapy / pCT (for protons mostly dictated by beam optics and SAD)
- Footprint and cost reduction
- **Lower power consumption** (in SC dipoles comes mainly from AC losses, but refrigeration power needed)
- Combined function magnets

Critical surface of NbTi (P. Ferracin, JUAS 2017) L Bottura, A practical fit for the critical surface of NbTi, 1999.

Advantages:

- Weight reduction (300t at NIRS vs 600t at HIT for carbon ions, 25t ProNova vs 200t PSI Gantry 2)
- Size reduction for carbon ion therapy / pCT (for protons mostly dictated by beam optics and SAD)
- Footprint and cost reduction
- Lower power consumption (in SC dipoles comes mainly from AC losses, but refrigeration power needed)
- Combined function magnets

Challenges:

- Strong magnetic fields (stray fields, max. 0.5 mT at isocentre)
- **Slower ramping** (high energy acceptance gantries such fixed field during treatment/imaging)
- Cryogenics in a rotating system (cryogen-free cryocoolers)
- **Quenches** (proton therapy facilities require high machine availability, typically more than 95%)

Critical surface of NbTi (P. Ferracin, JUAS 2017) L Bottura, A practical fit for the critical surface of NbTi, 1999.

Advantages:

- Weight reduction (300t at NIRS vs 600t at HIT for carbon ions, 25t ProNova vs 200t PSI Gantry 2)
- Size reduction for carbon ion therapy / pCT (for protons mostly dictated by beam optics and SAD)
- Footprint and cost reduction
- Lower power consumption (in SC dipoles comes mainly from AC losses, but refrigeration power needed)
- Combined function magnets

Challenges:

- Strong magnetic fields (stray fields, max. 0.5 mT at isocentre)
- **Slower ramping** (high energy acceptance gantries such fixed field during treatment/imaging)
- Cryogenics in a rotating system (cryogen-free cryocoolers)
- **Quenches** (proton therapy facilities require high machine availability, typically more than 95%)

Example in proton therapy: ProNova Solutions SC360

- 250 MeV protons
- Radius: more than 4 m, length: less than 5 m
- No considerable size reduction (235 m³ compared to 250 m³ Gantry 2 at PSI)
- Max. magnetic field 4 T in superconducting dipoles

Critical surface of NbTi (P. Ferracin, JUAS 2017) L Bottura, A practical fit for the critical surface of NbTi, 1999.

	Basic	gantry	, param	neters
--	-------	--------	---------	--------

Length of dipole Type A	0.6 m
Integrated field over physical length (A)	3.0 T
Length of dipole Type B	0.66 m
Integrated field over physical length (B)	3.3 T
Maximum quadrupole coefficient	27 T/m
Gantry length	8 m
Gantry radius	4.5 m

pCT gantry:

- Double achromat design
- Local and global achromaticity
- Beam degrader and collimation system integration

Energy degrader

—

Energy degrader

Energy degrader

Conductor layers are wound such that:

- Transverse field components sum
- Solenoidal field components cancel

Canted cosine theta magnet

Conductor layers are wound such that:

- Transverse field components sum
- Solenoidal field components cancel

CCT cross section:

- Each conductor sits in its own channel;
- Channels separated by the ribs (transferring Lorentz forces to the spar)

Canted cosine theta magnet

Conductor layers are wound such that:

- Transverse field components sum
- Solenoidal field components cancel

CCT cross section:

- Each conductor sits in its own channel;
- Channels separated by the ribs (transferring Lorentz forces to the spar)

MANCHESTER 1824 he University of Manchester

S. Caspi, A 16T Canted-Cosine-Theta (CCT) An option for the FCC, 2015

Advantages of a CCT magnet:

- No or little pre-stress required (no coil movement)
- Any harmonics or superposition of harmonics (combined-function)
- Lower number of components compared to i.e. sector magnet
- Lower cost

9

Canted cosine theta magnet

Design parameters:

- Bore radius
- Physical length
- Magnetic field
- Rib thickness in the midplane
- Wire: material, dimensions, number of wires in the channel
- Number of layers
- Current density
- Skew angle

Dipole parameters

Tilt angle of the coil	31.8 deg
Length of the magnet	0.52 m
Midplane rib thickness	0.3 mm
Wire material	NbTi
Wire non-Cu/Cu ratio	0.51
Wire diameter	0.825 mm

ACTIVE SHIELDING

PASSIVE SHIELDING

Dipole parameters

Tilt angle of the coil	31.8 deg
Length of the magnet	0.52 m
Midplane rib thickness	0.3 mm
Wire material	NbTi
Wire non-Cu/Cu ratio	0.51
Wire diameter	0.825 mm

PASSIVE SHIELDING

ACTIVE SHIELDING

ACTIVE SHIELDING

Surface contours: B 4.210714E+0 3.500000E+0 2.500000E+0 1.500000E+0 1.00000E+0 5.00000E+1 3.690254E-3

PASSIVE SHIELDING

Passive shielding dipole parameters

Eng. current [A]	268 A
Peak field in the conductor	4.2 T
Number of wires	8x2
Yoke inner radius	74 mm
Yoke weight	270 kg
Total length of SC strand	1.14 km

ACTIVE SHIELDING

Active shielding dipole parameters

Eng. current [A]	283 A
Peak field in the conductor	5.0 T
Number of wires	11x2
Inner radius of the sh. coil	220 mm
Tilt angle of sh. coil	62.2 deg
Total length of SC strand	2.74 km

PASSIVE SHIELDING

Passive shielding dipole parameters

Eng. current [A]	268 A
Peak field in the conductor	4.2 T
Number of wires	8x2
Yoke inner radius	74 mm
Yoke weight	270 kg
Total length of SC strand	1.14 km

Surface contours: B 4.210714E+0

- 3.500000E+0

- 3.000000E+0

- 2.500000E+0

- 2.000000E+0

1.500000E+0

- 1.000000E+0

5.00000E-1

3.609254E-3

PASSIVE SHIELDING

Passive shielding dipole parameters

268 A

4.2 T

8x2

74 mm

270 kg

1.14 km

Eng. current [A]

Peak field in the conductor

Number of wires

Yoke inner radius

Yoke weight

Total length of SC strand

ACTIVE SHIELDING

Active shielding dipole parameters

Eng. current [A]	283 A
Peak field in the conductor	5.0 T
Number of wires	11x2
Inner radius of the sh. coil	220 mm
Tilt angle of sh. coil	62.2 deg
Total length of SC strand	2.74 km

Surface contours: B 4.210714E+0

- 3.500000E+0

3.000000E+0

- 2.500000E+0

- 2.000000E+0

1.50000E+0

- 1.000000E+0

5.00000E-1

- 3.609254E-3

PASSIVE SHIELDING

Passive shielding dipole parameters

268 A

4.2 T

8x2

74 mm

270 kg

1.14 km

Eng. current [A]

Peak field in the conductor

Number of wires

Yoke inner radius

Yoke weight

Total length of SC strand

ACTIVE SHIELDING

Active shielding dipole parameters

Eng. current [A]	283 A
Peak field in the conductor	5.0 T
Number of wires	11x2
Inner radius of the sh. coil	220 mm
Tilt angle of sh. coil	62.2 deg
Total length of SC strand	2.74 km

Worse stray fields cancellation

More efficient stray fields shielding

٠

Summary

Conclusions:

- Compact gantry capable of transporting protons for therapy and imaging
- Superconducting NbTi CCT dipoles with passive shielding (iron yoke)
- Single block boron carbide energy degrader for higher particle transmission

Next steps:

- Energy degrader integration into the gantry
- Collimation system
- Lower dispersion larger energy acceptance of the system
- Quadrupole gradient incorporation to the final bending section dipoles

MANCHESTER 1824

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675265, OMA - Optimization of Medical Accelerators.

Summary

Conclusions:

- Compact gantry capable of transporting protons for therapy and imaging
- Superconducting NbTi CCT dipoles with passive shielding (iron yoke)
- Single block boron carbide energy degrader for higher particle transmission

Next steps:

- Energy degrader integration into the gantry
- Collimation system
- Lower dispersion larger energy acceptance of the system
- Quadrupole gradient incorporation to the final bending section dipoles

Thank you!

MANCHESTER 1824

The University of Manchest

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675265, OMA - Optimization of Medical Accelerators.

References

- 1. Robin, D. S., et al. "Superconducting toroidal combined-function magnet for a compact ion beam cancer therapy gantry." *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 659.1 (2011): 484-493.
- 2. Caspi, S., et al. "Test results of CCT1—A 2.4 T canted-cosine-theta dipole magnet." IEEE Transactions on Applied Superconductivity 25.3 (2015): 1-4.
- 3. Brouwer, Lucas Nathan. *Canted-cosine-theta superconducting accelerator magnets for high energy physics and ion beam cancer therapy*. University of California, Berkeley, 2015.
- 4. Calzolaio, C., Sanfilippo, S., Calvi, M., Gerbershagen, A., Negrazus, M., Schippers, M. and Seidel, M., 2016. Preliminary magnetic design of a superconducting dipole for future compact scanning gantries for proton therapy. IEEE Transactions on Applied Superconductivity, 26(3), pp.1-5.
- 5. Van Nutgeren, J. DESIGN STUDY OF A NOVEL AIR-COIL CCT HIGH-LUMI ORBIT CORRECTOR, Magnet Technology 2017, CERN, Switzerland.
- 6. Goodzeit, C.L., Meinke, R.B. and Ball, M., 2005. Concentric tilted double-helix dipoles and higher-order multipole magnets. U.S. Patent 6,921,042.
- 7. <u>https://indico.cern.ch/event/302074/contributions/693619/attachments/570710/786097/</u> <u>Aligned_Block_Eucard-2_Annual_Meeting_Desy_20_may_2014.pdf</u>
- 8. Derenchuk V. The ProNova SC360 Gantry. Daresbury, UK: Modern Hadron Therapy Gantry Developments, Cockcroft Institute; 2014.

