A data-driven nuclear fragmentation model for a fast Monte-Carlo code, FRED, in Particle Therapy with Carbon beams.

M. De Simoni, G. Battistoni, M. Fischetti, E. Gioscio, M. Marafini, R. Mirabelli, V. Patera, A. Sarti, A. Schiavi, A. Sciubba, G. Traini, “Sapienza” University of Rome and INFN (Italy)

Collaboration Network:
Summary

❖ Development of FRED
❖ FRED quality check:
 ◆ Single pencil beam
 ◆ SOBP QA
 ◆ Field Size Factor test
 ◆ Heterogeneous material
❖ RBE model implementation
❖ Execution of FRED and its performance
❖ Input of FRED
❖ Implementation of nuclear fragmentation (work in progress)
Treatment Planning System (TPS) currently used

ANALYTICS TPS
- Faster
- Simplified beam-body interaction model using a 3D water equivalent representation of the patient morphology

Used routinely in PT treatment

MC TPS (FLUKA and TOPAS/Geant4)
- Slower
- Explicitly take into account the details in the interaction of particles with human tissues

Only used to check treatment plans for a restricted number of difficult cases
ANALYTICS TPS
❖ Faster
❖ Simplified beam-body interaction model using a 3D water equivalent representation of the patient morphology
Used routinely in PT treatment

MC TPS (FLUKA and TOPAS/Geant4)
❖ Slower
❖ Explicitly takes into account the details in the interaction of particles with human tissues
Only used to check treatment plans for a restricted number of difficult cases

NEW!!

FAST MC: FRED
❖ Faster
❖ Takes into account the details in the interaction of particles with human tissues that are needed for a TPS
Using it as Quality Assurance for TPS

TPS
Patient Data
Accelerators Parameters
Physician Prescription
Fast Monte Carlo: FRED

Fast Partice thErapy Dose evaluator

The FRED code has been designed to perform fast and accurate calculations of energy deposition in the patient’s body during the delivery of a treatment plan.

Main characteristics of FRED:

- Tabulated total **stopping power** in water (PSTAR-NIST), **energy straggling** (Gaussian and Landau-Vavilov regimes)
- **MCS models**: single-, double-, triple-gaussian, 2 gauss + Rutherford
- **Nuclear interactions**: elastic and inelastic; fragmentation; local deposition of heavy ions; tracking of secondary protons and deuterons
- **RBE models** = fixed 1.1, LETd-based (Wedenberg, Carabe, Wilkens, Chen)
Comparison with other MC tools

Proton beams at different energies in a water target have been simulated with FRED, FLUKA and GEANT4 switching on and off different models.

Agreement within 1.5% of the Bragg Peak value
Lateral dose distribution

The accuracy of the lateral dose distribution is very important for PT applications, since the dose value in a single voxel is dependent on contributions from many thousands of pencil beams closely bundled in the transverse direction.

150 MeV protons in liquid water

Good agreement up to 4 orders of magnitude
Performance: QA SOBP

SOBP QA: set of 6 cm-sided cubic volumes, planned and verified in water with the same dosimetric system applied for patient-specific QA -> routine at CNAO

Irradiation geometry and dose map in the longitudinal and transverse planes for the SOBP QA cube at the depth of 15 cm

ZY slice at x=-15.05

XY slice at z=0.05

Water tank CT
Performance: QA SOBP

The SOBP QA has been calculated with TPS and then recalculated with FRED. Both have been compared with measurements (PPCH 11).

3D Gamma index (2mm/2%) passing rate for all measurements >99%
Performance: FSF

Fields Size Factor (FSF) test: technique that allows to directly measure the contribution of long range lateral tails in the dose distribution.

Excellent reproduction of nuclear tails

$E = 226.61 \text{ MeV/u}$ at 20 cm depth

Agreement within 2%
Performance: Validation in heterogeneous media

- Heterogeneous head phantom
- MatriXX measurement in water
- Single energy: 100, 150 and 200 MeV
- Range shifter

3D Gamma index (2mm/2%) passing rate for all measurements >99%
Performance: Biological dose with variable RBE

Function of LET

$$\text{RBE} \left(D_p, \frac{\alpha_p}{\alpha_x}, \frac{\beta_p}{\beta_x}, \left(\frac{\alpha}{\beta} \right)_x \right) = \frac{D_x}{D_p} = \frac{\sqrt{\left(\frac{\alpha}{\beta} \right)_x^2 + 4 \frac{\alpha_p}{\alpha_x} \left(\frac{\alpha}{\beta} \right)_x D_p + 4 \frac{\beta_p}{\beta_x} D_p^2 - \left(\frac{\alpha}{\beta} \right)_x}}{2D_p}$$

Variable RBE models:
Wedenberg (Wedenberg et al. 2013)
Wilkens (Wilkens and Oelfke 2004)
Chen (Chen and Ahmad 2012)
Carabe (Carabe et al. 2012)
Performance: Biological modelling

The user can choose the RBE model

RBE = 1.1

Generic RBE

Variable RBE

Clinic
Parallel execution model in Fred

Extranode
MPI

Fred front-end

Intranode
POSIX
Multi-threads

Intranode
Multi-GPU
OpenCl
Dose calculation for 150 MeV protons in liquid water phantom with 2 mm voxel resolution.

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Primary/s</th>
<th>μs/primary</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLUKA/GEANT4</td>
<td>0.75 k</td>
<td>1340</td>
</tr>
<tr>
<td>FRED</td>
<td>15 k</td>
<td>68</td>
</tr>
<tr>
<td>FRED</td>
<td>800 k</td>
<td>1.35</td>
</tr>
<tr>
<td>FRED</td>
<td>20000 k</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Excellent performance with proton beams
INPUT

- text input file (energy and type of the projectile, voxel resolution, model switched on, etc.)
- geometry and ROIs definition
- machine file (accelerator settings)
- voxel resampling and optimization parameters (if it is used as TPS)
- DICOM import (Patient CT)
- RTSTRUCT (Physician Prescription: PTV, OAR, etc.)
- RTPLAN (raster file)
Library

libFred

Fred

C++

Python

plugin

plugin

plugin

plugin
The simulation of the fragmentation of the ions of the beam, actually not considered in the code, gives an important contribution for the dose deposition for heavy ion treatments.

We are implementing the nuclear model of the Carbon fragmentation.
Ganil Experiment

Development of the model using data taken during experiments to study the fragmentation of 12C beams on thin targets at GANIL (laboratory of CAEN, France, 2011-2017).

Data consist on: **energy and angular cross-section** distributions on H, C, O, Al, and Ti with beams of 12C with energies of 50 and 95 MeV/n with a detection angle $[-43^\circ,+43^\circ]$

C. Divay et al, PHYSICAL REVIEW C 95, 044602 (2017)
Implementation of the ions fragmentation

\[\text{4He energy distribution} \]

Beam: 12C \([95\text{MeV/u}]\) \n
\[\text{6Li energy distribution} \]

Beam: 12C \([95\text{MeV/u}]\) \n

Implementation of the ions fragmentation

Limitation of GANIL Data:
- Beam Energy: only 12C 50 MeV/u and 95 MeV/u
- Angle: $[-43^\circ, 43^\circ]\]

Scaling of fragments kinetic energy:

$$K_f = K_f^{Ganil} R$$

Scaling of fragments angle emission:

$$\theta_f \propto \sqrt{\frac{p_f}{p_b}} \approx \sqrt{\frac{K_f}{K_b}}$$

$$R = \frac{K_b}{K_b^{Ganil}}$$

$$K_f = \text{Kinetic Energy of fragments produced by a beam with kinetic energy } K_b$$

$$K_f^{Ganil} = \text{Kinetic Energy of fragments produced by the beam used in the GANIL experiment}$$

$$K_b = \text{Kinetic Energy of the beam}$$

$$K_b^{Ganil} = \text{Kinetic Energy of the beam used in the GANIL experiment}$$

$$\theta_f = \text{Angle of fragmentation with a beam of kinetic energy } K_b$$

$$p_f = \text{Transverse momentum of the fragment}$$

$$p_b = \text{Transverse momentum of the beam}$$
Waiting for new data

The model will be implemented using new data from other experiments of our group such as the one shown in the poster of Y. Dong

“Beam and target fragmentation in hadrontherapy: The FOOT experiment”
Conclusion

- FRED is used as research tool at several clinical and research centres in Europe (Krakow, Trento, Maastricht, Lyon)
- Running on GPU hardware it is possible to recalculate a complete treatment plan within minutes
- Excellent performances with Proton beams
- Work in progress for the implementation of nuclear models in order to use FRED also with Carbon ion beams

Graphic interface of FRED
Thanks!

micol.desimoni@uniroma1.it
angelo.schiavi@uniroma1.it
vincenzo.patera@uniroma1.it