

INTERNATIONAL CONFERENCE ON MEDICAL ACCELERATORS AND PARTICLE THERAPY

A high repetition laser-plasma proton accelerator for medical radioisotope production

J. Peñas¹, J.F. Benlliure¹, M.D. Cortina¹, L. Martín¹, D. González¹, J.J. Llerena¹, C. Ruiz², M. Seimetz³ ¹ IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain. ² Instituto Universitario de Física Fundamental y Matemáticas, Universidad de Salamanca, Salamanca, Spain.

Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Valencia, Spain.

CNA, SEVILLA, SPAIN **SEPTEMBER 2019**

Motivation

POSITRON EMISSION TOMOGRAPHY (PET) IMAGING.

- 511 keV gamma-rays from the Detection of annihilation of positrons produced by short-lived B⁺ radioisotopes.
- Most accurate 3D technique in medical diagnosis.
- Over 2M treatments/year and an increase of about 7% each year.

WHY LASER-INDUCED PRODUCTION OVER CONVENTIONAL **ACCELERATOR PRODUCTION?**

Cheaper and more compact.

Proton/Ion acceleration

LASER-DRIVEN PROTON ACCELERATION.

Multiple mechanisms involved that scale with laser intensity:

- Plasma generation on target surface due to ASE/prepulses.
- Laser-plasma interaction \rightarrow Generation of electron bunch (~MeV).
- Target Normal Sheath Acceleration (TNSA) \rightarrow Generation of a proton/ion beam (~MeV, ~ps).

ISOTHERMAL PLASMA EXPANSION MODEL [2,3].

- Electron cloud at rear side with constant temperature T_e .
- Analytical description of the electric field (~TV/m) and the particle distributions.
- Acceleration time limited to fs ps.

THE LASER LABORATORY FOR ACCELERATION AND **APPLICATIONS.**

At the L2A2 of the Universidad de Santiago de Compostela, Spain, a high repetition rate femtosecond laser is used for proton acceleration and radioisotope production.

Intensity	~10 ¹⁹ W/cm ²
Wavelenght 800 nm	
Pulse duration	25 fs
Pulse energy	1.2 J
Repetition rate 10 Hz	
Focal spot radius	≥2 µm

Experimental set-up @ L2A2

DETECTION AND DIAGNOSIS TOOLS.

Advanced radiation detector systems for the precise characterization of the proton/ion beam:

Scintillator

M. Seimetz [4]

CONTROL AND CORRECTION SYSTEM.

Accurate movement of the target assembly shot-by-shot for the target material refreshment and positioning at the laser focal spot (20 nm, 20 µdeg precision).

Focal correction is done by previously generating a target

surface map with a optical laser-position sensor (~1 µm repeatibility). Deviation reduction from hundreds to a <u>few µm</u>.

- *Time-of-Flight* (TOF): Beam energy data.
- Thomson parabola: Ion discrimination (p, C⁺, C⁺², etc.).

TARGET SYSTEM.

Aluminium and mylar sheets of 2 - 12 µm thickness are placed in a wheel-like holder which allows hundreds to thousands shots in a row at 10 Hz.

Measurements and results

EXPERIMENTAL MAIN RESULTS.

December 2018 and April 2019 campaigns:

- Multishot operation at <u>10 Hz</u>.
- High stability (~12%) both in cut-off energy and temperature.
- Proton energies up to 2 MeV.

Proton spectra are reconstructed from TOF signals and compared with calculations given by the isothermal expansion model.

Production estimates

PROTON ACCELERATION ESTIMATES.

Optical

For optimized L2A2 experimental parameters, isothermal expansion model calculation gives a proton spectrum with cut-off energy of 11.03 MeV \rightarrow Higher than some radioisotope production cross section thresholds!

PET RADIOISOTOPE PRODUCTION ESTIMATES.

Radioisotope activities estimated after 1h of irradiation at 10 Hz:

roducion reaction	Activity [MBq]	¹¹ B(p;n) ¹¹ C reaction production 20 In the second secon
¹ B(p;n) ¹¹ C	16.33	
⁰ B(d;n) ¹¹ C	5.06	

WHAT'S NEXT?

• Optimization of experimental parameters: target thickness, positioning precision and focal spot radius, to achieve proton energies up to 10 MeV at 10 Hz.

Required doses for PET imaging:

• Preclinical: 10 - 30 MBq. \rightarrow Almost there! • Clinical: 200 MBq - Gbq. \rightarrow Achievable at 100 - 200 Hz. • Stable production of ¹¹C and study its application for preclinical PET imaging.

[1] M. Roth, M. Schollmeier, CERN Yellow Reports 1, 231 (2016). [2] P. Mora, Phys. Rev. Lett. 90, 185002 (2003). [3] J. Fuchs et al., Nature Physics 2, 48-54 (2006). [4] M.Seimetz et al., IEEE Trans. Nuc. Sci. 62, 6 (2015).

This work has been supported by Spanish Miniserio de Ciencia, Innovación y Universidades within the framework of the FPI predoctoral María de Maetzu project (MDM-2016-0692-17-2) and by Xunta de Galicia and EU, LASERPET project (2013-AD009.01).

