A high repetition laser-plasma proton accelerator for medical radioisotope production

J. Peñas¹, J.F. Benlliure¹, M.D. Cortina¹, L. Martín¹, D. González¹, J.J. Llerena¹, C. Ruiz², M. Seimetz³ *1 IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.*

2 Instituto Universitario de Física Fundamental y Matemáticas, Universidad de Salamanca, Salamanca, Spain.

3 Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Valencia, Spain.

Motivation Proton/Ion acceleration

Experimental set-up @ L2A2

Measurements and results

This work has been supported by Spanish Miniserio de Ciencia, Innovación y Universidades within the framework of the FPI predoctoral María de Maetzu project (MDM-2016-0692-17-2) and by Xunta de Galicia and EU, LASERPET project (2013-AD009.01).

Production estimates

THE LASER LABORATORY FOR ACCELERATION AND APPLICATIONS.

At the L2A2 of the Universidad de Santiago de Compostela, Spain, a high repetition rate femtosecond laser is used for proton acceleration and radioisotope production.

- *Time-of-Flight* **(TOF): Beam energy data.**
- Thomson parabola: Ion discrimination (p, C⁺, C⁺², etc.).

LASER-DRIVEN PROTON ACCELERATION.

Multiple mechanisms involved that scale with laser intensity:

- **Plasma generation on target surface due to ASE/prepulses.**
- Laser-plasma interaction → Generation of **electron bunch (~MeV).**
- *Target Normal Sheath Acceleration* **(TNSA)** → **Generation of a proton/ion beam (~MeV, ~ps).**

EXPERIMENTAL MAIN RESULTS.

December 2018 and April 2019 campaigns:

- Multishot operation at 10 Hz.
- **High stability (~12%) both in cut-off energy and temperature.**
- Proton energies up to 2 MeV.

Proton spectra are reconstructed from TOF signals and compared with calculations given by the isothermal expansion model.

CNA, SEVILLA, SPAIN SEPTEMBER 2019

• Stable production of ¹¹C and study its application for preclinical PET imaging.

INTERNATIONAL CONFERENCE ON MEDICAL ACCELERATORS AND PARTICLE THERAPY

CONTROL AND CORRECTION SYSTEM.

- - \cdot **Electron cloud at rear side with constant temperature** T_e **.**
	- Analytical description of the electric field (~TV/m) and **the particle distributions.**
	- Acceleration time limited to fs ps.

Accurate movement of the target assembly shot-by-shot for the target material refreshment and positioning at the laser focal spot (20 nm, 20 μdeg precision).

Focal correction is done by previously generating a target

DETECTION AND DIAGNOSIS TOOLS.

Advanced radiation detector systems for the precise characterization of the proton/ion beam:

TARGET SYSTEM.

Aluminium and mylar sheets of 2 – 12 μm thickness are placed in a wheel-like holder which allows hundreds to thousands shots in a row at 10 Hz.

PROTON ACCELERATION ESTIMATES.

For optimized L2A2 experimental parameters, isothermal expansion model calculation gives a proton spectrum with cut-off energy of 11.03 MeV → **Higher than some radioisotope production cross section thresholds!**

PET RADIOISOTOPE PRODUCTION ESTIMATES.

Radioisotope activities estimated after 1h of irradiation at 10 Hz:

Required doses for PET imaging:

• Preclinical: 10 - 30 MBq. → Almost there! • Clinical: 200 MBq - Gbq. → Achievable at 100 - 200 Hz.

M. Seimetz [4]

Scintillator

Optical

POSITRON EMISSION TOMOGRAPHY (PET) IMAGING.

- **Detection of 511 keV gamma-rays from the annihilation of positrons produced by short-lived β + radioisotopes.**
- Most accurate 3D technique in medical diagnosis.
- **Over 2M treatments/year and an increase of about 7% each year.**

WHY LASER-INDUCED PRODUCTION OVER CONVENTIONAL ACCELERATOR PRODUCTION?

● **Cheaper and more compact.**

WHAT'S NEXT?

● **Optimization of experimental parameters: target thickness, positioning precision and focal spot radius, to achieve proton energies up to 10 MeV at 10 Hz.**

[1] M. Roth, M. Schollmeier, *CERN Yellow Reports* 1, 231 (2016). **[2]** P. Mora, *Phys. Rev. Lett.* 90, 185002 (2003). **[3]** J. Fuchs *et al.*, *Nature Physics* 2, 48-54 (2006). **[4]** M.Seimetz *et al.*, *IEEE Trans. Nuc. Sci.* 62, 6 (2015).

ISOTHERMAL PLASMA EXPANSION MODEL [2,3].

surface map with a optical laser-position sensor (~1 μm repeatibility). Deviation reduction from hundreds to a few μm.

Left: Temporal evolution of the electric field (green) and the ion (blue) and electron (red) densities at the rear side of the target [1]*.*

