Production cross section of the short-lived \(\beta + \) emitters ¹²N, ²⁹P and ^{38m}K for online PET verification in proton therapy

T. Rodriguez-Gonzalez^{1,2}*, C. Guerrero^{1,2}, P. Dendooven³, L. M. Fraile^{4,5}, S. España^{4,5}, M. C. Jimenez-Ramos², J. Lerendegui-Marco¹, M. A. Millan-Callado^{1,2}, I. Ozoemelam³, V. Valladolid-Onecha^{4,5} and J.M. Quesada¹

- ¹ Department of Atomic, Molecular and Nuclear Physics. Universidad de Sevilla. Avda. Reina Mercedes, s/n. 41012. Sevilla, Spain. ² Centro Nacional de Aceleradores. C/ Thomas Alva Edison, 7. 41092. Sevilla, Spain.
- ³ KVI Center for Advanced Radiation Technology, University of Groningen. Zernikelaan 25, 9747AA, Groningen, The Netherlands.
- ⁴ Grupo de Física Nuclear & Iparcos, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, CEI Moncloa, Madrid, Spain.
- ⁵ Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.

*mrodriguezg@us.es

1. In-vivo PET range verification

- Comparison between measured and expected (MC codes) β⁺ activity distributions required ^[2,3]
- The accuracy of expected activity distributions depends on the underlying cross section data (input of the MC code)

Need of more accurate measurement of cross-section values in the full energy range (up to 250 MeV) so PET range verification method could give mm accuracy [4,5]

- Long-lived β⁺ emitters: ¹¹C, ¹³N (offline monitoring)
- Short-lived β⁺ emitters: ¹²N, ^{38m}K, ²⁹P (online monitoring)

2. PET isotopes for beam-on range verification

- Compared to long-lived β⁺ emitters, the short-lived provide real-time feedback on the dose delivered, a largest number of counts and are less susceptible to biological wash-out.[6]
- State of the art:
- Measurement of the integral prod. yield below 55 MeV. [7]
- Measurements below 48 MeV for ¹²N. ^[8]
- Significant discrepancies between different available cross section data sets.

3. Experimental setup @ KVI-CART

We have irradiated films of graphite, CaF₂ and P between 3 mm thick aluminium plates (the β ⁺ to γ -ray ε_{conv} ranges from 30% for ¹²N to 60% for ²⁹P)

1 mm thickness

Graphite

CaF₂ 2 mm thickness

3 mm thickness

- The 511 keV photons are detected by cylindrical (1.5"x1.5") and conical (height 1.5", bases 1.5" and 1") LaBr₃(Ce) detectors opperating in coincidence.
- The absolute single and coincidence detection efficiencies are determined with a ²²Na source.

- The beam current is monitored with a beam ionization chamber placed before the first target.
- The alignment has been checked using Gafchromic films placed before and after each target.

Irradiations at 90 and 150 MeV with several degraders: the overlap of two irradiation energies validates the measurements. GEANT4 = 90 MeV + 4 cm PMMA = 150 MeV + 4 mm Al $E_n = 150 \text{ MeV} + 9 \text{ mm Al}$ Scor 100 Energy (MeV)

beam depends on the half-life of interest. 12 s on/40 s off beam pulsing (P target) Counts Det #0 - Det #1 Det #2 – Det #3 Det #4 - Det #5 Det #6 – Det #7 10^{3} Time (s)

The beam-on/off cycles of the proton

4. Preliminary analysis

Figure from [9]

- The production yield in each target is obtained looking at the 511 keV photons in coincidence (emitted mostly outside the target, somewhere in the converters).
- case of the emission of characteristic y-rays, they also measured (emitted from inside the target).
- The production in the Al layers is also measured with empty targets (subtracted to total production).
- The decay curve (in red) is fitted to:

$$A(t) = A_{29} e^{-\lambda^{29} P^t} + C,$$

to obtain the production cross section.

Geant4 Monte Carlo simulations (validated with the measurement of the induced activity of ⁶³Zn in 2 mm ^{nat}Cu with 18 MeV protons at CNA)

The corrections applied to the measured annihilation photon intensities are:

- the attenuation of the 511 keV photons in the degraders/converters.
- the escape of a fraction of the positrons from the converters.

5. Conclusions & outlook

- Production yields between 20 and 150 MeV
- measured at KVI-CART, analisys ongoing. Geant4 simulations validated at CNA.
- Measurement at higher energies (up to 190
- Measurement below 55 MeV with better energy resolution (single shots) planed for 2020.

References

^[1] Kraan, Front. Oncol., **5** 150 (2015) ^[2] Oelfke et al., Phys. Med. Biol., **41** 177 (1996) [3] Parodi et al., Int. J. Radiat. Oncol. Biol. Phy., 68

920-34 (2007) [4] España et al., Phys. Med. Biol., **56** 2687-98 (2011) [5] Seravalli et al., Phys. Med. Biol., **57**(6) (2012) [6] Buitenhuis et al., Phys. Med. Biol., **62** 4654 (2017)

[8] Rimmer and Fisher, Nucl. Phys., A108 561-566

[7] P. Dendooven et al., Phys. Med. Biol., **60** 8923

[9] T. Nishio, Int. J. Rad. Onc. Biol. Phys., **76** 1 277– 286 (2010)

MeV) planned in 2020.

