Production cross section of the short-lived β^+ emitters 12N, 29P and 38mK for online PET verification in proton therapy

T. Rodriguez-Gonzalez1,2, C. Guerrero1,2, P. Dendooven3, L. M. Fraile4,5, S. España4,6, M. C. Jimenez-Ramos2, J. Lerendegui-Marco1, M. A. Millan-Callado1,2, I. Ozoemelam3, V. Valladolid-Onechaf4,6 and J.M. Quesada1

1. In-vivo PET range verification

- Comparison between measured and expected (MC codes) β^+ activity distributions required
- The accuracy of expected activity distributions depends on the underlying cross section data (input of the MC code)

Need of more accurate measurement of cross-section values in the full energy range (up to 250 MeV) so PET range verification method could give mm accuracy [3]

- Long-lived β^+ emitters: 11C, 12N (offline monitoring)
- Short-lived β^+ emitters: 12N, 38mK, 29P (online monitoring)

2. PET isotopes for beam-on range verification

- Compared to long-lived β^+ emitters, the short-lived provide real-time feedback on the dose delivered, a largest number of counts and are less susceptible to biological wash-out [4]
- State of the art:
 - Measurement of the integral prod. yield below 55 MeV, [7]
 - Measurements below 48 MeV for 12N, [4]
- Significant discrepancies between different available cross section data sets.

Figure from [1]

3. Experimental setup @ KVI-CART

- We have irradiated films of graphite, CaF$_2$ and P between 3 mm thick aluminium plates (the β^+ to γ-ray γ-conv ranges from 30% for 12N to 60% for 29P).
- The 511 keV photons are detected by cylindrical (1.5\,x\,1.5\,\text{cm}2, height 1.5\,\text{cm}, bases 1.5\,\text{cm}2 and 1\,\text{cm}) LaBr$_3$(Ce) detectors operating in coincidence.
- The absolute single and coincidence detection efficiencies are determined with a 22Na source.
- The beam current is monitored with a beam ionization chamber placed before the first target.
- The alignment has been checked using Gafchromic films placed before and after each target.

Irradiations at 90 and 150 MeV with several degraders: the overlap of two irradiation energies validates the measurements.

4. Preliminary analysis

- The production yield in each target is obtained looking at the 511 keV photons in coincidence (emitted mostly outside the target, somewhere in the converters).
- In case of the emission of characteristic γ-rays, they are also measured (emitted from inside the target).
- The production in the Al layers is also measured with empty targets (subtracted to total production).
- The decay curve (in red) is fitted to:
 $$A(t) = A_0 e^{-\lambda t} + C,$$
 to obtain the production cross section.

5. Conclusions & outlook

- Production yields between 20 and 150 MeV measured at KVI-CART, analyses ongoing.
- Geant4 simulations validated at CNA.
- Measurement at higher energies (up to 190 MeV) planned in 2020.
- Measurement below 55 MeV with better energy resolution (single shots) planned for 2020.

References

- Parodi et al., J. Radiat. Res. (Japan), 52, 83n-84n (2011)

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 849402, and from the Spanish Ministry of Science, Innovation and Universities under grant No FPA2016-77689-C2-1-R.

International Conference on Medical Accelerators and Particle Therapy
4-6 September 2017, Seville, Spain