

Z quark matches Subjet Charge in ZH events

Matthias Weber (CERN)

1

Jet Charge

Signal Sample: HZ with $Z \rightarrow qq$, cross-section: 3.67 fb, concentrate on $H \rightarrow bb$

Jet Charge definition(s)

$$Q^{\kappa} = \frac{1}{(p_{\mathrm{T}}^{\mathrm{jet}})^{\kappa}} \sum_{i} Q_{i} (p_{\mathrm{T}}^{i})^{\kappa}, \quad \Longrightarrow \quad$$

$$Q_{L}^{\kappa} = \sum_{i} Q_{i} \left(p_{\parallel}^{i}
ight)^{\kappa} \bigg/ \sum_{i} \left(p_{\parallel}^{i}
ight)^{\kappa}$$
 ,

Used now, can also be replaced by weighting with energy, or projection parrallel to jet axis

Subjet Charge: different kappa values

Try to differentiate between negatively and positively charged subjet: → study different kappa parameters to find out which one seems most discriminant

MC truth genjets

Detector level recojets

 κ values between 0.20 and 0.50 better suited (study done via overlap)→ κ =0.30

Subjet Charge: MC truth vs detector jets

Try to differentiate between negatively and positively charged subjet: → compare MC truth with detector level jets

Peak between MC truth and detector jet level relatively stable, though larger tails for detector subjet charge distributions

Subjet Charge: MC truth vs detector jets

Larger Tails in MC truth vs detector level subjet charge \rightarrow is it track efficiency \rightarrow Study impact of p_T threshold on requirement, fix kappa=0.30

Seems no visible impact of lower trackPt requirement \rightarrow so tracking efficiency seems not to be the issue

Subjet Charge: MC truth vs detector jets

Larger Tails in MC truth vs detector level subjet charge \rightarrow is it track efficiency \rightarrow Study impact of p_T threshold on requirement, fix kappa=0.50

Seems no visible impact of lower trackPt requirement \rightarrow so tracking efficiency seems not to be the issue