INTERNATIONAL WORKSHOP ON NEW PHYSICS AT THE LOW ENERGY SCALES

ES-2019

SEP. 23 - 27, 2019

The FASER experiment

Sergio Gonzalez Sevilla

(University of Geneva)

On behalf of the FASER collaboration

NEPLES-2019, 23rd September 2019, KIAS (Seoul)

SIMONS FOUNDATION

Supported by:

Outline

- Introduction
 - Physics motivation
 - Experiment location
- Signal and backgrounds
 - Typical signal and background signatures
 - Background estimation and in-situ measurements
- Detector layout
- Physics potential
 - Sensitivity reach for LLP
 - Neutrino measurements
- Summary

Physics motivation

- General-purpose LHC experiments (ATLAS, CMS) designed to perform measurements in the transverse plane → many NP searches based on signatures from heavy and strongly interacting particles (high p_T, large missing E_T)
- In the case of **light and weakly interacting new particles**, these would be mostly produced **at low p_T**, highly collimated in the very forward direction ($\theta \sim mrad$)
 - ▶ Very large number of low p_T events available at the LHC !!

• σ_{inel}(13 TeV) ~ 75 mb ⇒ N_{inel} (Run3, 150 fb⁻¹) ~10¹⁶

• FASER (the ForwArd Search ExpeRiment) is a small and inexpensive (2*M*\$) experiment that will search for new particles at the LHC

Iocated 480 m from IP, along beam collision axis (line of sight, LOS)

Sergio Gonzalez (UniGe)

NEPLES-2019, 23.09.2019, KIAS

Sergio Gonzalez (UniGe)

NEPLES-2019, 23.09.2019, KIAS

5

Sergio Gonzalez (UniGe)

NEPLES-2019, 23.09.2019, KIAS

Sergio Gonzalez (UniGe)

NEPLES-2019, 23.09.2019, KIAS

Signal and backgrounds

Signal and backgrounds

<u>Ex:</u> pp \rightarrow A'(\rightarrow e⁺e⁻) + X, with E(A')~TeV

• <u>Signal signature</u>

- two very-high energy, oppositely-charged tracks (or γ) originated from a common vertex in the decay volume and with combined momentum pointing back to the IP
- no signal in the upstream scintillator veto-layer
- Iarge energy deposited in the em calorimeter

Signal and backgrounds

<u>Ex:</u> pp \rightarrow A'(\rightarrow e⁺e⁻) + X, with E(A')~TeV

• <u>Signal signature</u>

- two very-high energy, oppositely-charged tracks (or γ) originated from a common vertex in the decay volume and with combined momentum pointing back to the IP
- no signal in the upstream scintillator veto-layer
- Iarge energy deposited in the em calorimeter
- <u>Backgrounds</u>
 - FASER's location (~480m downstream ATLAS IP) naturally (rocks, concrete, upstream magnets) provides an effective suppression for high-energy particles
 - ► Main backgrounds: muons and neutrinos from the IP
 - muon-associated radiative processes (e.g. γ-bremsstrahlung) to be highly suppressed by first scintillator (+ lead-absorber, 20 X₀) veto station

Background estimations

Fluence rate (GeV⁻¹ cm⁻² s⁻¹) for muons: 10 GeV threshold

FLUKA used to estimate the backgrounds expected in FASER. Sources considered: 1. particles produced at IP

10

Fluence rate spectra at FASER (above 10 GeV) for the LHC

- 2. showers from proton losses hitting beam-pipe
- 3. beam-gas interactions (from "beam-2" moving towards ATLAS)

Muons (@L=2x10 ³⁴ cm ⁻² s ⁻¹)				
Energy threshold [GeV]	Charged Particle Flux [cm ⁻² s ⁻¹]			
10	0.40			
100	0.20			
1000	0.06			

negligible

Vμ

Vu

Ve

5000

In-situ measurements

• <u>Radiation levels</u>

- BatMon battery-operated radiation monitoring devices
- Measurement of high-energy hadron flux and thermal neutron fluence after 3 fb⁻¹ 13 TeV pp collisions
- Results fully consistent with FLUKA simulations
 - D / year < 4 x 10^{-3} Gy
 - Φ / year < 5 x 10⁷ [1MeV-n_{eq} / cm²]
- ➡ No rad-hard electronics needed in the experiment

Detector layout

Detector layout

ATLAS IP

Magnets

NEPLES-2019, 23.09.2019, KIAS

Sergio Gonzalez (UniGe)

el)

Silicon tracker

- Tracker using silicon strip modules from the ATLAS Semiconductor Tracker (SCT)
 - ▶ 80 spare SCT barrel modules **⇒** many thanks to ATLAS SCT Collaboration !
 - > 2 sides, each with 2 single-sided p-on-n silicon sensors, 40 mrad stereo angle
 - 80 μm strip-pitch, 1536 readout channels / module
- QA of SCT modules performed @CERN in March 2019
 - > 80 modules passing selection criteria (leakage current, noise, # dead / noisy channels)

FASER Interna

Sergio Gonzalez (UniGe)

NEPLES-2019,

Silicon tracker

- FASER tracker = 3 stations, each with 3 layers of 8 SCT modules
 - First tests (assembly, thermal performance) on prototype layer on-going

Tracker Layer

314 mm

Sergio Gonzalez (UniGe)

a.u.

Electromagnetic calorimeter

- FASER ECAL built with four spare LHCb Outer Ecal modules = many thanks to LHCb Collaboration !
 - Shashlik layout: sampling lead/scintillator structure readout by plastic wavelength-shifting (WLS) fibres running parallel to the beam axis
 - ▶ 66 layers x (2mm Pb + 4mm plastic scintillator) ⇒ 25 X₀
 - combined light from all layers readout by a single PMT

Electromagnetic calorimeter

- Calibration / tests using both ¹³⁷Cs source and cosmics
 - cosmic-ray test stand to allow combined testing of scintillator stations and calorimeter modules

Scintillator layers

Veto station

- ▶ suppress incoming charged particles (high-energy µ) ➡ target efficiency per scintillator layer > 99.9%
- Pb absorber (20 X₀) for γ-conversion (μ-bremsstrahlung) to be vetoed by the scintillator layers
- Trigger / timing station
 - target timing resolution < 1 ns</p>
 - light-guides bent 90° to reduce overall width
- Trigger / preshower station
 - additional trigger signal (coincidence with 1st trigger station)
 - thin radiator layer as preshower + low-Z absorber to reduce calorimeter backsplash

NEPLES-2019, 23.09.2019, KIAS

TDAQ

• Trigger

- Signal: Scintillators U Ecal
- ▶ Rate: ~600 Hz, dominated by muons from ATLAS IP

Physics potential

Benchmark scenarios

- The FASER experiment will search for new light (MeV-GeV mass range) weakly interacting particles
 Iong-lived particles (LLP)
- Sensitivity reach studied under the assumption of a certain number of benchmark models and detector configuration
 - radius increase in FASER 2 to improve sensitivity to NP particles from heavy mesons
 (B,D) decays, as more spread out than in the case of light meson (π⁰) decays

	Radius [cm]	Decay volume length [m]	Integrated luminosity [fb ⁻¹]	Timescale	
FASER 1	10	1.5	150	LHC Run3 2021-2023	FASER 1 is approved and fully funded, though
FASER 2	100	5.0	3000	HL-LHC 2026-2035	officially FASER 2 not yet

- Further assumptions
 - 100% detection efficiency for all visible decay modes
 - sensitivity curves do not significantly change with O(1) change in efficiency
 - minimal visible energy E >100 GeV
 - no high-energy backgrounds

Benchmark scenarios

- FASER physics program is rich: discovery potential for all candidates with renormalizable couplings (dark photons, dark Higgs bosons, heavy neutral leptons); ALP with all types of couplings (γ, f, g); etc.
 - benchmark models defined by the CERN Physics Beyond Colliders study group

Benchmark Model	FASER FASER 2		References		
BC1: Dark Photon			Feng, Galon, Kling, Trojanowski, 1708.09389		
BC1': U(1) _{B-L} Gauge Boson			Bauer, Foldenauer, Jaeckel, 1803.05466 FASER Collaboration, 1811.12522		
BC2: Invisible Dark Photon	-	-	_		
BC3: Milli-Charged Particle	-	-	—		
BC4: Dark Higgs Boson	-		Feng, Galon, Kling, Trojanowski, 1710.09387 Batell, Freitas, Ismail, McKeen, 1712.10022		
BC5: Dark Higgs with hSS	-		Feng, Galon, Kling, Trojanowski, 1710.09387		
BC6: HNL with e	-		Kling, Trojanowski, 1801.08947 Helo, Hirsch, Wang, 1803.02212		
BC7: HNL with μ	_		Kling, Trojanowski, 1801.08947 Helo, Hirsch, Wang, 1803.02212		
BC8: HNL with τ			Kling, Trojanowski, 1801.08947 Helo, Hirsch, Wang, 1803.02212		
BC9: ALP with photon			Feng, Galon, Kling, Trojanowski, 1806.02348		
BC10: ALP with fermion			FASER Collaboration, 1811.12522		
BC11: ALP with gluon			FASER Collaboration, 1811.12522		

Sergio Gonzalez (UniGe)

rare decays of light mesons (π⁰ / η → γA') dark bremsstrahlung (pp → ppA')

Production

$$B(\pi^0 \to A'\gamma) = 2\epsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 B(\pi^0 \to \gamma\gamma)$$

- > pair of particles: e^+e^- , $\mu^+\mu^-$ (for $m_{A'} > 2 m_{\mu}$), $\pi^+\pi^-$, etc.
- decay length (in the limit $E_{A'} \gg m_{A'} \gg m_e$):

$$\bar{d} = c \frac{1}{\Gamma_{A'}} \gamma_{A'} \beta_{A'} \approx (80 \text{ m}) B_e \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right] \left[\frac{100 \text{ MeV}}{m_{A'}}\right]^2$$

⇒ for $m_{A'} \sim 10$ - 100 MeV and $\epsilon \sim 10^{-5}$ (within FASER reach, see later), dark photons with $E_{A'} \sim \text{TeV}$ have a decay length of ~100 m

NEPLES-2019, 23.09.2019, KIAS

A'

Dark photon (A')

Massive dark photons (m_{A'}) arising from a hidden sector with broken U(1) gauge symmetry → coupled to the SM photon via a small kinetic mixing term (ε)

Dark photon (A')

- Very large π^0 event rates produced in pp collisions
 - ► 2x10¹⁷ @LHC Run3 (150 fb⁻¹)
 - predictions consistent among different MCs (EPOS-LHC, QGSJET-II-04, SIBYLL 2.3)

• tuned to match recent LHC data (forward high-E scattering data)

- 0.6% of π^0 within FASER acceptance
- Even with large suppression (ε=10-5), we expect N_{A'}~ 100 signal events (for m_{A'}=100 MeV) that can be detected with FASER !

• (detector acceptance for A' \rightarrow e⁺e⁻ ~ 10⁻³)

Dark photon (A')

- FASER will already probe new phase-space since the first fb⁻¹
- Large discovery potential after 150 fb⁻¹
- FASER-2:
 - mass reach > GeV
 - ε probed in the range 10⁻⁷ 10⁻⁴

Sergio Gonzalez (UniGe)

Dark Higgs (Φ)

- Dark Higgs boson: <u>single production</u>
 - mainly produced through rare B-decays
 - FASER-2 highly complementary to other proposed experiments
- Dark Higgs boson: double production (large trilinear coupling)
 - ▶ probe hΦΦ coupling with sensitivity rivaling the sensitivity from probes of $h^{(*)} \rightarrow \Phi \Phi$ at e.g. the HL-LHC ⇒ complementary to high energy experiments (LHC, ILC)
 - sensitivity to low values of θ mixing angle

Sergio Gonzalez (UniGe)

NEPLES-2019, 23.09.2019, KIAS

Axion-like particles (a)

- γ converts into ALP after collision with a nucleus
- ALP travels ~350 m and decays to γγ
- high-energy beam-dump experiment

 Not possible to distinguish the two close-by photons from ALP decay, though event signatures with i) no charged particle in the tracker and ii) >TeV deposited em energy will be ~background free

Axion-like particles (a)

• ALP coupled to photons

• ALP coupled to fermions and gluons

Sergio Gonzalez (UniGe)

NEPLES-2019, 23.09.2019, KIAS

Neutrinos and FASERv

- FASER
- Very large flux of neutrinos going through FASER → possibility to perform 1st collider neutrino measurements

- <u>FASERv</u>: emulsion detector in front of the FASER detector
 - 1000 emulsion films interleaved with 1-mm thick tungsten plates
 - film: 2 x 70 μm-thick emulsion layers (25 x 25 cm²) + 200 μm-thick plastic base
 - 🖛 1.2 tons, 285 X₀, 10.1 λ_{int}
 - exchanged ~3 times / year to control charged particle density

Sergio Gonzalez (UniGe)

Pilot neutrino detector

- Pilot neutrino detector installed in TI12 tunnel in 2018
 - Two modules (15 kg each), 12.5 cm x 10 cm / module
 - 100 layers of 1 mm-thick Pb plates
 - 120 layers of 0.5 mm-thick W plates
 - ▶ 12.5 fb⁻¹ collected data
- Analysis in progress, though so far
 - track density of ~ 3 x 10⁵ tracks / cm²
 - few single vertex candidates already found

1000 µm

13'000 reconstructed

tracks in small volume

2 mm x 2 mm x 10

emulsion films

FASERv physics goals in LHC Run3 (2021-2023)

• Detection of collider neutrinos

	Interactions	Mean energy		
$v_e + \overline{v_e}$	~1300	~830 GeV		
$\nu_{\mu}+\overline{\nu_{\mu}}$	~20400	~630 GeV		
$\nu_\tau + \overline{\nu_\tau}$	21	965 GeV		

<u>Assumptions</u>: tungsten emulsion detector (25 cm x 25 cm x 135 cm), 14 TeV, 150 fb⁻¹, $E_v > 100$ GeV

• Charged current cross section measurements

 systematic uncertainties include geometrical acceptance, vertex detection efficiency and lepton identification efficiency

The FASER Collaboration

• 46 collaborators, 18 institutions, 8 countries

Henso Abreu (Technion), Claire Antel (Geneva), Akitaka Ariga (Bern), Tomoko Ariga (Kyushu/Bern), Jamie Boyd (CERN), Dave Casper (UC Irvine), Franck Cadoux (Geneva), Xin Chen (Tsinghua), Andrea Coccaro (INFN), Candan Dozen (Tsinghua), Yannick Favre (Geneva), Jonathan Feng (UC Irvine), Didier Ferrere (Geneva), Iftah Galon (Rutgers), Stephen Gibson (Royal Holloway), Sergio Gonzalez-Sevilla (Geneva), Shih-Chieh Hsu (Washington), Zhen Hu (Tsinghua), Peppe Iacobucci (Geneva), Sune Jakobsen (CERN), Roland Jansky (Geneva), Enrique Kajomovitz (Technion), Felix Kling (SLAC), Susanne Kuehn (CERN), Lorne Levinson (Weizmann), Ke Li (Washington), Josh McFayden (CERN), Sam Meehan (CERN), Friedemann Neuhaus (Mainz), Hidetoshi Otono (Kyushu), Brian Petersen (CERN), Helena Pikhartova (Royal Holloway), Michaela Queitsch-Maitland (CERN), Jakob Salfeld-Nebgen (CERN), Osamu Sato (Nagoya), Kristof Schmieden (CERN), Matthias Schott (Mainz), Anna Sfyrla (Geneva), Savannah Shively (UC Irvine), Jordan Smolinsky (UC Irvine), Aaron Soffa (UC Irvine), Yosuke Takubo (KEK), Eric Torrence (Oregon), Sebastian Trojanowski (Sheffield), Dengfeng Zhang (Tsinghua), Gang Zhang (Tsinghua)

The FASER Collaboration

Jonathan Feng (UC Irvine) — FASER co-spokeperson

Summary and outlook

- FASER is a small and cheap experiment that will search for light and weakly interacting new particles at the LHC
 - installed 480 m downstream the ATLAS IP along the line-of-sight
 - Detector: decay volume (1.5 m) + spectrometer (3.5 m), spare silicon microstrip detectors for tracking (ATLAS SCT) and spare em calorimeter modules (LHCb)
- Thanks to the <u>Simons foundation</u> and to the <u>Heising-Simons foundation</u> for securing the funding for this project, and <u>CERN</u> (civil engineering and preparation works)
- Extremely fast turnaround time
 - ▶ LOI submitted to LHCC in July 2018
 - Experiment approved by CERN on March 2019
 - All parts designed. Production / procurement of required items in-progress
 - QA and sub-systems commissioning to follow
 - Assembly and full-detector commissioning during 2020
 - **Data-taking during LHC Run3 (2021-2023), target 150 fb-1**

Summary and outlook

- FASER to complement current LHC's physics program
 - exploit large number of highly boosted low pT inelastic events
 - dark photons, dark Higgs, ALP, etc.
 - ▶ Neutrino physics possible with addition of emulsion detectors (FASERv)
- Possible upgrade (FASER-2) for the HL-LHC
 - increase decay volume (1m) and overall spectrometer (5m)
 - further civil-engineering needed to extend existing tunnel

Additional information

• FASER Collaboration

- "Letter of Intent for FASER: ForwArd Search ExpeRiment at the LHC", arXiv:1811.10243
- "Technical Proposal for FASER: ForwArd Search ExpeRiment at the LHC", arXiv:1812.09139
- "FASER's Physics Reach for Long-Lived Particles", arXiv:1811.12522
- "FASER: ForwArd Search ExpeRiment at the LHC (Input to the European Particle Physics Strategy)", arXiv:1901.04468
- "Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC", arXiv: 1908.02310

https://twiki.cern.ch/twiki/bin/view/FASER/WebHome

Thanks for your attention !

Inelastic pp cross section at 13 TeV

<u>NB</u>: in the CMS measurement the final σ_{inel} is obtained using a model dependent extrapolation of the measured cross section in different phase-space regions, corresponding to different detector acceptances on stable MSclereninary

 $\xi > 10^{-6}$ for the offline HF OR detector-level selection (energy deposit > 5 GeV in any of the Hadronic Forward calorimeters)

 $\xi_X > 10^{-7}$ or $\xi_Y > 10^{-6}$ for the offline HF OR CASTOR offline selection (energy deposite > 5 GeV in a FPOI the HGF calorimeters or an energy deposit > 5 GeV in the very forward CASTOR calorimeter). The acceptance assymmetize assymmetize from the deposit act that CASTOR as only located at the minus sign of the interaction point. △ P8 Monash13 P6 Z2*

1.08

P8 DL

Sergio Gonzalez (UniGe)

NEPLES-2

P8 MBR

13 TeV

FASER installation in TI12

FASER installation in TI12

Neutrino-induced backgrounds (1/2)

- Forward-going neutrinos are dominantly produced by in-flight π^{\pm} decays
 - distribution of π^{\pm} similar to that of π^{0} -
 - requiring E>1 TeV and θ ≤ 0.5 mrad (so that the produced neutrinos reach FASER) N_{π±} ~ 10¹⁵ for 300 fb⁻¹
- **1. The probability that a pion decays before the D1 magnet** (required as otherwise the pion be deflected and the produced neutrino will miss the detector) **is:**

$$P_{\pi} = 1 - \exp\left(-\frac{L_{\mathrm{D1}}m_{\pi^{\pm}}}{p_{\pi^{\pm}}\tau_{\pi^{\pm}}}\right) \approx 10^{-3} \left[\frac{\mathrm{TeV}}{p_{\pi^{\pm}}}\right]$$

with $L_{D1}\sim 59\text{-}83$ m being the distance between the IP and D1, $~\tau_{\pi\pm}\sim 2.6~x~10^{-8}$ s and $m_{\pi}\sim 140$ MeV.

2. The probability that the resulting v interacts with the detector volume is:

$$P_{\nu} \simeq \Delta \,\sigma(E_{\nu}) \,\rho_{\rm det} N_A \simeq 6 \times 10^{-12} \left[\frac{\sigma(E_{\nu})}{10^{-35}\,{\rm cm}^2}\right] \left[\frac{0.1\,{\rm m}^2}{A_{\rm det}}\right] \left[\frac{M_{\rm det}}{1\,{\rm kg}}\right]$$

where $\rho_{det} = M_{det} / (A_{det}\Delta)$ is the average density of the target material, M_{det} , A_{det} and Δ are the mass, transverse area and length of the detector and $\sigma(E_{\nu})$ is the neutrino-nucleus cross section.

Sergio Gonzalez (UniGe)

 $p_{\pi}[GeV]$

Phys. Rev. D97 no. 3, (2018) 035001, arXiv:1708.09389

Neutrino-induced backgrounds (2/2)

 $\sigma(E_{\nu})$ is normalized to the charged-current (CC) cross section for neutrinos with E_{ν} ~ 200 GeV, which is the average energy produced in the decay of TeV pions

⇒ the number of charged leptons (from neutrino CC events, $v_1N \rightarrow IX$) is expected to be $N_{\pi}P_{\pi}P_{\nu} \sim 10$ per kg of detector mass (for 300 fb⁻¹)

- Analytical calculation in excellent agreement with MC simulations:
 - ~ 10 events per kg of detector mass ($E_v \sim 200 \text{ GeV}$)
 - ~ 0.1 events per kg of detector mass ($E_v \sim 1 \text{ TeV}$)
- ➡ considering the small mass of the first tracking station (~500 g) and of the air in the decay volume (~ 60 g), one expects at most few ~ 100 GeV CC evens (much less with TeV energies)

➡ Neutrino-induced backgrounds are negligible

J. Feng et al., "ForwArd Search ExpeRiment at the LHC", Phys. Rev. D97 no. 3, (2018) 035001, arXiv:1708.09389

Light neutral meson production

• Comparison of EPOS-LHC, QGSJET-II-04 and SIBYLL 2.3

FIG. 3. Distribution of π^0 (top) and η (bottom) mesons in the (θ, p) plane, where θ and p are the meson's angle with respect to the beam axis and momentum, respectively. The different panels show results from the simulation codes EPOS-LHC [52] (left), QGSJET-II-04 [53] (center), and SIBYLL 2.3 [54,55] (right). The total number of mesons is the number produced in one hemisphere $(0 < \cos \theta \le 1)$ in 13 TeV pp collisions at the LHC with an integrated luminosity of 300 fb⁻¹. The bin thickness is 1/5 of a decade along each axis. The dashed line corresponds to $p_T = p \sin \theta = \Lambda_{QCD} \approx 250$ MeV.

Sergio Gonzalez (UniGe)

NEPLES-2019, 23.09.2019, KIAS

Dependence on beam collision axis offset

arxiv: 1811.12522

FIG. 19. FASER reach for dark photons (left) and ALPs with dominantly fermion couplings (right) for different offsets *d* between the beam collision axis and the center of FASER.

Dependence on MC generators and PDFs

arxiv: 1811.12522

FIG. 20. FASER reach for dark photons (left) and ALPs with dominant couplings to fermions (right). For the dark photon, we vary the forward Monte Carlo generators used to produce the light meson spectrum as well as the validity on the transverse momentum of the dark photon used in the bremsstahlung approximation. For the ALPs, we change the PDF used to estimate the forward *B*-meson spectra in FONLL.

Dependence on energy threshold

arxiv: 1811.12522

FIG. 21. FASER reach for dark photons (left) and ALPs with dominant couplings to fermions (right) for different LLP energy threshold cuts.

Dependence on signal efficiency

- <u>Example</u>: dark photon decay to e⁺e⁻, with decay products required to be
 - completely enclosed in the tracker within R=10 cm
 - separated by more than =0.3 mm in the bending plane of the tracking stations
- Selection criteria:
 - Loose: tracks sufficiently separated in tracking stations #2 and #3
 - Tight: tracks sufficiently separated in tracking stations #1, #2 and #3

FIG. 6. Left: Signal efficiency for the loose selection criterion as a function of dark photon energy and the decay's longitudinal position, averaged over the transverse position, for the dark photon benchmark point $m_{A'} = 100$ MeV and $\epsilon = 10^{-5}$. Center: FASER dark photon reach without signal efficiencies (dotted), with loose selection cuts (dashed), and tight selection cuts (solid). The "all" and "loose" curves are almost indistinguishable. Right: Energy spectrum of dark photon decay products in FASER for $m_{A'} = 100$ MeV and $\epsilon = 2 \times 10^{-5}$ (solid), $\epsilon = 10^{-5}$ (dashed) and $\epsilon = 0.7 \times 10^{-5}$ (dotted). We show the spectrum for all dark photons decaying in FASER (red), and those passing the loose (green) and tight (blue) selection cuts.

Sergio Gonzalez (UniGe)

NEPLES-2019, 23.09.2019, KIAS

Beam background in-situ measurements

10 ⁵	Period Luminos		i nosityy tu	ositvy turston matring		Rate Counting Rate/Luminosity	
		$[10^3]$	⁴ s	-1 cm^{-2}]	$[s^{-1}]$		$[10^{-34} \text{ cm}^2]$
104	¥o beam	ſ		_ with tu	ngsten (E>16eV6		-
	Beam (no collisions)			-	0.55		_
10 ³	\mathbb{C} ollisions	کر _	1/1	.8	7.0		4.0
	€ollisions		1	.3.	4.8		3.8
10 ²	Collisions		0).8 ^ر ىرى 8.	3.3		4.2
	Collisions		۲ ().6	10-0-2.7		4.3
	Collisions).5	2.2		4.1

TABLE III! Preliminary results from the TimePix detector installed in TI18, indicating that the main particle rate is proportional to uninosity in IP1. This also shows a small, but significant, increase in rate with non-colliding beam, compared to no beam in the machine. Beam (no collisions) corresponds to a full machine (2556 burgches) at the start of a physics fill, providing a total intensity of 2.7×10^{14} protons per beam.

NEPLES-2019, 23.09.2019, KIAS