Scalar dark matter interacting through an extra U (1) gauge interaction

Osamu Seto (Hokkaido Univ.)

With: Nobuchika Okada (U. of Alabama) Refs : 1908.09277

§ Introduction

Dark matters are everywhere!

• Its identification (Mass, ...) and properties are unknown

§ Low mass scale is interesting

§§g-2 in muon

• Anomalous magnetic moment of muon [Brown et al (2001), Bennet et al (2006)]

Fig from [Keshavarzi et al (2019)]

§§g-2 in muon

- Anomalous magnetic moment of muon [Brown et al (2001), Bennet et al (2006)]
- Dark photon interpretation BABAR collaboration: Phys.Rev.Lett. 119 (2017) no.13, 13180 10^{-2} 0.01 $\mathbf{K} \rightarrow \pi \nu \nu$ ω 3×10^{-3} (g-2) ± 2σ **BABAR 2017** g favored 10^{-3} CHARM-II 10^{-} CCFR (g-2)NA 64 $(g-2)_{\mu} \pm 2\sigma$ $3 \times 10^{\circ}$ 10-0.01 0.03 0.10.3 3 10⁻³ 10⁻² 10⁻¹ m_{A'} (GeV) ¹⁰ $m_{Z'}$ (GeV) - $U(l)_{L\mu-L\tau}$ interpretation [Ma et al (2002), ...] is still viable [Altmannshofer et al (2014)]

§ § A gap in IceCube?

• High energy neutrino spectrum measured by IceCube [IceCube (2014)]

§ § A gap in IceCube?

Gap!?

• High energy neutrino spectrum measured by IceCube [IceCube (2014)]

§ § A gap in IceCube?

- High energy neutrino spectrum measured by IceCube [IceCube (2014)]
- New physics interpretation

– Z' interpretation in U(l)_{L μ -L τ} model [Araki et al (2015)]

§ § Hubble tension

• Hubble parameter

§ § Hubble tension

- Hubble parameter
- New physics interpretation
 - $-\Delta N_{\text{eff}}$ relaxes Hubble tension [D'Eramo et al (2018), Planck (2018), ...]

§ § Hubble tension

- Hubble parameter
- New physics interpretation
 - $-\Delta N_{\text{eff}}$ relaxes Hubble tension [D'Eramo et al (2018), Planck (2018), ...]
 - Z' interpretation in U(l)_{Lµ-L τ} model [Escudero et al (2019)]

§ § B anomaly

• $B \rightarrow K ll$ anomaly at LHCb [(2013), ...] and Belle [(2016)]

§ § B anomaly

• $B \rightarrow K ll$ anomaly at LHCb [(2013), ...] and Belle

• Light U(l)_{L μ -L τ} gauge boson interpretation [Altmannshofer et al (2014, 2016)]

§ § Excess in globular cluster 47 Tuc

DSS Globular Cli Hubble Space Tele

Understanding the γ -ray emission from the globular cluster 47 Tuc: evidence for dark matter?

Anthony M. Brown,^{1,*} Thomas Lacroix,² Sheridan Lloyd,¹ Céline Bœhm,^{3,4,5,6} and Paula Chadwick¹ ¹Centre for Advanced Instrumentation, Department of Physics, University of Durham. South Road. Durham, DH1 3LE, UK $m_{\rm DM \, bf} = 34 {\rm ~GeV}, \langle \sigma v \rangle_{\rm bf} = 6 \times 10^{-30} {\rm ~cm}^3 {\rm ~s}^{-1}, b\bar{b}$ 10^{-11} [Brown et al (2018)] \mathbf{s}^{-1} $E_{\gamma}^{2}rac{\mathrm{d}n}{\mathrm{d}E_{\gamma}} \ [\mathrm{erg} \ \mathrm{cm}^{-2}$ 10^{-12} Spike best fit unresolved MSPs unresolved best fit Total unresolved $_{MSF}^{Spik}$ the DM mass is found to be 34 GeV, which is essentially T_{ote} the same as the best-fit DM explanation for the Galactic HHH Fern $\stackrel{\text{\tiny em}}{=}$ centre "excess" when assuming DM annihilation into b 10⁻¹³ quarks [23, 27]. However, the value of our best-fit anni-Residuals I hilation cross section is too small to account for the observed cosmological DM abundance, but this might a hint $\frac{-2}{10^{-1}}$ 10^{0} 10^{1} 10² $E_{\gamma} \left[\text{GeV} \right]$

• Several GeV mass for annihilation into $\tau \tau$??

§ Gauged U(1) scalar DM Model

§ Gauged U(1) scalar DM Model

• Particle content

	$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	U(1)	
Q^i	3	2	1/6	q_{Q^i}	
u_R^i	3	1	2/3	q_{u^i}	
d_R^i	3	1	-1/3	q_{d^i}	
L^i	1	2	-1/2	q_{L^i}	
e_R^i	1	1	-1	q_{e^i}	
Φ	1	2	1/2	0	
N_R^i	1	1	0	q_{N^i}	
ϕ_1	1	1	0	+1	
ϕ_2	1	1	0	+2	

• q_X to be anomaly free

Dark matter with the fixed charge so that it interacts with the U(1) breaking Higgs field.

C.f. [Rodejohann and Yaguna (2015), Biswas et al (2016, 2018), Singirala et al (2016), Bandyopadhyay et al (2018)]

§ § Masses and interactions

• Scalar potential

$$V(\Phi, \phi_1, \phi_2) = -M_{\Phi}^2 |\Phi|^2 + \frac{\lambda}{2} |\Phi|^4 + M_{\phi_1}^2 \phi_1 \phi_1^{\dagger} - M_{\phi_2}^2 \phi_2 \phi_2^{\dagger} + \frac{1}{2} \lambda_1 (\phi_1 \phi_1^{\dagger})^2 + \frac{1}{2} \lambda_2 (\phi_2 \phi_2^{\dagger})^2 + \lambda_3 \phi_1 \phi_1^{\dagger} (\phi_2 \phi_2^{\dagger}) + (\lambda_4 \phi_1 \phi_1^{\dagger} + \lambda_5 \phi_2 \phi_2^{\dagger}) |\Phi|^2 - A(\phi_1 \phi_1 \phi_2^{\dagger} + \phi_1^{\dagger} \phi_1^{\dagger} \phi_2)$$

• Mases of DM and Higgs bosons

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} (\varphi \ \varphi_2) \begin{pmatrix} -M_{\Phi}^2 + \frac{3}{2}\lambda v^2 + \frac{1}{2}\lambda_5 v_2^2 & \lambda_5 v v_2 \\ \lambda_5 v v_2 & -M_{\phi_2}^2 + \frac{3}{2}\lambda_2 v_2^2 + \frac{1}{2}\lambda_5 v^2 \end{pmatrix} \begin{pmatrix} \varphi \\ \varphi_2 \end{pmatrix} \\ -\frac{1}{2} \left(M_{\phi_1}^2 + \frac{1}{2}\lambda_3 v_2^2 + \frac{1}{2}\lambda_4 v^2 - \sqrt{2}A v_2 \right) S^2 \\ -\frac{1}{2} \left(M_{\phi_1}^2 + \frac{1}{2}\lambda_3 v_2^2 + \frac{1}{2}\lambda_4 v^2 + \sqrt{2}A v_2 \right) P^2 \end{cases}$$

§ § Masses and interactions

- Interactions
 - Gauge interactions

$$\mathcal{L}_{\rm int} = g' Z'^{\mu} \left((\partial_{\mu} S) P - S \partial_{\mu} P \right)$$

- Absence of DM-DM-Z': Inelastic
- Scalar interactions

$$\mathcal{L}_{\text{int}} \supset \frac{1}{2} \left(\left(\lambda_4 v \cos \alpha - (\lambda_3 v_2 - \sqrt{2}A) \sin \alpha \right) h + \left(\lambda_4 v \sin \alpha + (\lambda_3 v_2 - \sqrt{2}A) \cos \alpha \right) H \right) S^2 + \frac{1}{2} \left(\left(\lambda_4 v \cos \alpha - (\lambda_3 v_2 + \sqrt{2}A) \sin \alpha \right) h + \left(\lambda_4 v \sin \alpha + (\lambda_3 v_2 + \sqrt{2}A) \cos \alpha \right) H \right) P^2$$

- The direct DM search bound for Higgs bosons exchange processes is avoidable by taking those very small
- Not used in freeze-out annihilation.

§ § Annihilation

- Annihilation modes
 - Co-annihilation

– Into Z' pair

§ For specific U(1) models

- $U(1)_{B-L}$
 - At TeV scale
- $U(1)_{(B-L)3}$ - At the weak scale
- $U(1)_{L\mu-L\tau}$
 - From MeV to the weak scale

§ § $L_{\mu} - L_{\tau}$ model

• Thermal abundance and others

§ § $L_{\mu} - L_{\tau}$ model

• Constraints from and prospect for direct and indirect DM searches

§ § $L_{\mu} - L_{\tau}$ model

• Thermal abundance and others

§ Summary

- Light neutral gauge boson suggested?
 g-2 of muon, IceCube, Hubble tension, B-anomaly...
- Gauged U(1) scalar DM model with DM-DM-U(1) Higgs coupling
- Gauged $L_{\mu} L_{\tau}$ offers the possibility of low mass dark matter and the mediator Z'
 - 10 GeVish, B-anomaly, 47 Tuc excess
 - 10 MeVish, muon g-2, Hubble tension, IceCube