## (Fantast Beasts and Where to Find Them)

## Parallel/Mirror Dark World

## (Fantastic Beasts and Where to Find Them)

Zurab Berezhiani

## University of L'Aquila and LNGS

New Physics at the Low Energy Scale: NEPLES-2019 KIAS, Seoul, 23-27 Sept. 2019

## Contents

(1) Introduction: Mirror Matter and

Where to Find Them)

Zurab Berezhiani
(2) Chapter I: Neutrino - mirror neutrino mixings
(3) Chapter II: neutron - mirror neutron mixing
(4) Chapter III: $n-n^{\prime}$ and Neutron Stars
(5) Chapter IV: $n-n^{\prime}$ and UHECR
(6) Backup

# Introduction 

Them)

Zurab Berezhiani

## Summary

Introduction:
Mirror Matter
Chapter
Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars

Open your mind, relax and go downstream ..... Tomorrow never knows

## Bright \& Dark Sides of our Universe

Parallel/Mirror Dark World
(Fantast
Beasts and Where to Find Them)

Todays Universe: flat $\Omega_{\text {tot }} \approx 1$ (inflation) $\ldots$ and multi-component:

- $\Omega_{B} \simeq 0.05$ observable matter: electron, proton, neutron!
- $\Omega_{D} \simeq 0.25$ dark matter: WIMP? axion? sterile $\nu$ ? ...
- $\Omega_{\Lambda} \simeq 0.70$ dark energy: $\Lambda$-term? Quintessence? ...
- $\Omega_{R}<10^{-3}$ relativistic fraction: relic photons and neutrinos

Matter - dark energy coincidence: $\Omega_{M} / \Omega_{\Lambda} \simeq 0.45,\left(\Omega_{M}=\Omega_{D}+\Omega_{B}\right)$ $\rho_{\Lambda} \sim$ Const.,$\quad \rho_{M} \sim a^{-3} ; \quad$ why $\quad \rho_{M} / \rho_{\Lambda} \sim 1 \quad-j u s t$ Today?
Antrophic explanation: if not Today, then Yesterday or Tomorrow.
Baryon and dark matter Fine Tuning: $\Omega_{B} / \Omega_{D} \simeq 0.2$ $\rho_{B} \sim a^{-3}, \rho_{D} \sim a^{-3}$ : why $\rho_{B} / \rho_{D} \sim 1$ - Yesterday Today \& Tomorrow?

Baryogenesis requires BSM Physics: (GUT-B, Lepto-B, AD-B, EW-B ...)
Dark matter requires BSM Physics: (Wimp, Wimpzilla, sterile $\nu$, axion, ...)

Different physics for B-genesis and DM? Not very appealing: looks as Fine Tuning

Our observable particles .... very complex physics !! $G=S U(3) \times S U(2) \times U(1)(+$ SUSY ? GUT ? Seesaw ? ) photon, electron, nucleons (quarks), neutrinos, gluons, $W^{ \pm}-Z$, Higgs ... long range EM forces, confinement scale $\Lambda_{\mathrm{QCD}}$, weak scale $M_{w}$
... matter vs. antimatter (B-L violation, CP ... )
... existence of nuclei, atoms, molecules .... life.... Homo Sapiens !
Best of the possible Worlds .... (Candid, Frank and Uncontrived)
If dark matter comes from extra gauge sector ... it is as complex: $G^{\prime}=S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime} ?(+$ SUSY ? GUT '? Seesaw ?) photon', electron', nucleons ${ }^{\prime}$ (quarks'), $W^{\prime}-Z^{\prime}$, gluons' ?
... long range EM forces, confinement at $\Lambda_{Q C D}^{\prime}$, weak scale $M_{W}^{\prime}$ ?
... asymmetric dark matter ( $\mathrm{B}^{\prime}-\mathrm{L}^{\prime}$ violation, $\mathrm{CP} \ldots$ ) ?
... existence of dark nuclei, atoms, molecules ... life ... Homo Aliens ?
Another Best of the possible Worlds? (Maybe Candide had a twin?)
Call it Yin-Yang (in chinise, dark-bright) duality describes a philosophy how opposite forces are actually complementary, interconnected and interdependent in the natural world, and how they give rise to each other as they interrelate to one another.


## $S U(3) \times S U(2) \times U(1) \quad$ vs. $\quad S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime}$

## Two parities

Parallel/Mirror Dark World
(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

## Summary

Introduction: Mirror Matter

Chapter Neutrino - mirror neutrino mixings

Chapter II: neutron - mirror neutron mixing

Fermions and anti-fermions :

$$
q_{L}=\binom{u_{L}}{d_{L}}, \quad L_{L}=\binom{\nu_{L}}{e_{L}} ; \quad \begin{aligned}
& u_{R}, d_{R}, \\
& \mathrm{~L}=1
\end{aligned} \quad e_{R} .
$$

$$
\begin{array}{cc}
\bar{q}_{R}=\binom{\bar{u}_{R}}{\bar{d}_{R}}, \quad \bar{I}_{R}=\binom{\bar{\nu}_{R}}{\bar{e}_{R}} ;-1 / 3 & \bar{u}_{L}, \bar{d}_{L}, \\
\bar{e}_{L} \\
\mathrm{~B}=-1 / 3 & \mathrm{~L}=-1
\end{array}
$$

## Left

Twin Fermions and anti-fermions :

$$
\begin{array}{cc}
q_{L}^{\prime}=\binom{u_{L}^{\prime}}{d_{L}^{\prime}}, & I_{L}^{\prime}=\binom{\nu_{L}^{\prime}}{e_{L}^{\prime}} ; \\
\mathrm{B}^{\prime}=1 / 3
\end{array} \quad \begin{array}{ll}
u_{R}^{\prime}, d_{R}^{\prime}, & e_{R}^{\prime} \\
\mathrm{B}^{\prime}=1
\end{array} \quad \begin{aligned}
& \mathrm{B}^{\prime}=1 / 3
\end{aligned} \mathrm{~L}^{\prime}=1
$$

$$
\begin{array}{cc}
\bar{q}_{R}^{\prime}=\binom{\bar{u}_{R}^{\prime}}{\bar{d}_{R}^{\prime}}, & \overline{\bar{l}}_{R}^{\prime}=\binom{\bar{\nu}_{R}^{\prime}}{\bar{e}_{R}^{\prime}} ; \quad \bar{u}_{L}^{\prime}, \bar{d}_{L}^{\prime}, \\
\mathrm{B}^{\prime}=-1 / 3 & \overline{\mathrm{e}}_{L}^{\prime} \\
\mathrm{L}^{\prime}=-1 & \mathrm{~B}^{\prime}=-1 / 3 \\
\mathrm{~L}^{\prime}=-1
\end{array}
$$

$$
\mathcal{L}_{\text {Yuk }}=\bar{u}_{L} Y_{u} q_{L} \bar{\phi}+\bar{d}_{L} Y_{d} q_{L} \phi+\bar{e}_{L} Y_{e} I_{L} \phi+\text { h.c. }
$$

$$
\mathcal{L}_{\text {Yuk }}=\bar{u}_{L}^{\prime} Y_{u}^{\prime} q_{L}^{\prime} \bar{\phi}^{\prime}+\bar{d}_{L}^{\prime} Y_{d}^{\prime} q_{L}^{\prime} \phi^{\prime}+\bar{e}_{L}^{\prime} Y_{e}^{\prime} l_{L}^{\prime} \phi^{\prime}+\text { h.c. }
$$

$$
Z_{2} \text { symmetry }(L, R \rightarrow L, R): \quad Y^{\prime}=Y \quad B-B^{\prime} \rightarrow-\left(B-B^{\prime}\right)
$$

$$
P Z_{2} \text { symmetry }(L, R \rightarrow R, L): \quad Y^{\prime}=Y^{*} \quad B \square B^{\prime} \rightarrow B=B^{\prime} \equiv
$$

## $S U(3) \times S U(2) \times U(1)+S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime}$

## (Fantast

 Beasts and Where to Find Them)$G \times G^{\prime}$

## Regular world



Mirror world


- Two identical gauge factors, e.g. $S U(5) \times S U(5)^{\prime}$, with identical field contents and Lagrangians: $\quad \mathcal{L}_{\text {tot }}=\mathcal{L}+\mathcal{L}^{\prime}+\mathcal{L}_{\text {mix }}$
- Exact parity $G \rightarrow G^{\prime}$ : no new parameters in dark Lagrangian $\mathcal{L}^{\prime}$
- MM is dark (for us) and has the same gravity
- MM is identical to standard matter, (asymmetric/dissipative/atomic) but realized in somewhat different cosmological conditions: $T^{\prime} / T \ll 1$.
- New interactions between O \& M particles $\mathcal{L}_{\text {mix }}$

Possible portals to Mirror World: $\quad \mathcal{L}_{\text {mix }}$ these terms can be limited (only) by experiment/cosmology !
(Fantast
Beasts and
Where to Find Them)

Zurab Berezhiani

## Summary

- Higgs-Higgs' coupling $\lambda\left(\phi^{\dagger} \phi\right)\left(\phi^{\dagger \dagger} \phi^{\prime}\right)$ $\lambda<10^{-7}$ (COSM)
- Kinetic mixing of photons $\epsilon F^{\mu \nu} F_{\mu \nu}^{\prime}$

Makes mirror matter nanocharged ( $q \sim \epsilon$ )
$\epsilon<3 \times 10^{-7}$ (EXP) $\quad \epsilon<5 \times 10^{-9}$ (COSM)
GUT: $\frac{1}{M^{2}}\left(\Sigma G^{\mu \nu}\right)\left(\Sigma^{\prime} G_{\mu \nu}^{\prime}\right) \quad \epsilon \sim\left(\frac{M_{G U T}}{M}\right)^{2}$

Can induce galactic magnetic fields Z.B., Dolgov, Tkachev, 2013


## - All you need is ... M world colder than ours!

For a long time M matter was not considered as a real candidate for DM: naively assuming that exactly identical microphysics of $\mathrm{O} \& \mathrm{M}$ worlds implies also their cosmologies are exactly identical :

- $T^{\prime}=T, \quad g_{*}^{\prime}=g_{*} \quad \rightarrow \quad \Delta N_{\nu}^{\text {eff }}=6.15 \quad$ vs. $\Delta N_{\nu}^{\text {eff }}<0.5$ (BBN)
- $n_{B}^{\prime} / n_{\gamma}^{\prime}=n_{B} / n_{\gamma}\left(\eta^{\prime}=\eta\right) \quad \rightarrow \quad \Omega_{B}^{\prime}=\Omega_{B} \quad$ vs. $\Omega_{B}^{\prime} / \Omega_{B} \simeq 5$ (DM)

$$
\text { But all is OK if : } \quad \text { Z.B., Comelli, Villante, } 2000
$$

A. after inflation M world was born colder than O world, $T_{R}^{\prime}<T_{R}$
B. any interactions between M and O particles are feeble and cannot bring two sectors into equilibrium in later epochs
C. two systems evolve adiabatically (no entropy production);
so as the universe expands the temperature ratio $T^{\prime} / T \simeq$ constant
$T^{\prime} / T<0.5$ from BBN, but cosmological limits $T^{\prime} / T<0.2$ or so.

$$
\begin{aligned}
x=T^{\prime} / T \ll 1 & \Longrightarrow \quad \text { in } \mathrm{O} \text { sector } 75 \% \mathrm{H}+25 \%{ }^{4} \mathrm{He} \\
& \Longrightarrow \quad \text { in M world } 25 \% \mathrm{H}_{\square}^{\prime}+75 \%{ }^{4} \mathrm{He}^{\prime}
\end{aligned}
$$

## Brief Cosmology of Mirror World

Parallel/Mirror
Dark World
(Fantast Beasts and Where to Find Them)

- CMB \& (linear) structure formation epoch

Since $x=T^{\prime} / T \ll 1$, mirror photons decouple before M-R equality: $z_{\mathrm{dec}}^{\prime} \simeq x^{-1} z_{\text {dec }} \simeq \frac{1100}{x}$
After that (and before M -reionization) M matter behaves as colisionless CDM and $T^{\prime} / T<0.2$ is consistent with /Planck, BAO, Ly- $\alpha$ etc.

- Cosmic dawn
$M$ world is colder (and helium dominated), the first $M$ star formation can be faster which can make earlier reionization of $M$ sector ( $z_{r}^{\prime} \simeq 20$ or so vs $z_{\mathrm{r}}=10 \div 6$ ). Heavy first M stars $\left(M \sim 10^{3} M_{\odot}\right.$ and fast formation of central $\mathrm{BH}-$ Quasars? EDGES 21 cm at $z \simeq 17$ ?
- Galaxy halos?
if $\Omega_{B}^{\prime} \simeq \Omega_{B}, \mathrm{M}$ matter makes $\sim 20 \%$ of DM , forming dark disk, while $\sim 80 \%$ may come from other type of CDM (WIMP?) But perhaps $100 \%$ ? if $\Omega_{B}^{\prime} \simeq 5 \Omega_{B}$ : - M world is helium dominated, and the star formation and evolution can be much faster. Halos could be viewed as mirror elliptical galaxies dominated by BH and M stars, with our matter inside forming disks.

Because of $T^{\prime}<T$, the situation $\Omega_{B}^{\prime} \simeq 5 \Omega_{B}$ becomes plausible in baryogenesis. So, $M$ matter can be dark matter (as we show below) 引

## CMB and LSS power spectra

Parallel/Mirror Dark World

## (Fantast

 Beasts and Where to Find Them)Zurab Berezhiani

## Summary

Introduction: Mirror Matter

## Chapter I:

Neutrino - mirror neutrino mixings

Chapter II neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars



ZB, Ciarcelluti, Comelli, Villante, 2003

$$
z_{\mathrm{dec}}^{\prime} \simeq x^{-1} z_{\mathrm{dec}} \simeq \frac{1100}{x}
$$



Acoustic oscillations and Silk damping scales:
$x=T^{\prime} / T=0.5,0.3,0.2$

Can Mirror stars be progenitors of gravitational Wave bursts GW150914 etc. ?

Parallel/Mirror Dark World
(Fantast Beasts and Where to Find Them)

Picture of Galactic halos as mirror ellipticals (Einasto density profile), O matter disk inside ( M stars $=$ Machos).
Microlensing limits: $f \sim 20-40 \%$ for $M=1-10 M_{\odot}$, $f \sim 100 \%$ is allowed for $M=20-200 M_{\odot}$ but see Brandt '05


GW events without any optical counterpart
point towards massive BH compact binaries, $M \sim 10-30 M_{\odot}$ and radius $R \sim 10 R_{\odot}$

How such objects can be formed ?

M matter: 25 \% Hydrogen vs 75 \% Helium: M stars more compact, less opaque, less mass loses by stellar wind and evolving much faster. Appropriate for forming such BH binaries ?

## Experimental and observational manifestations

Parallel/Mirror Dark World

Beasts and Where to Find Them)
A. Cosmological implications. $T^{\prime} / T<0.2$ or so, $\Omega_{B}^{\prime} / \Omega_{B}=1 \div 5$. Mass fraction: $\mathrm{H}^{\prime}-25 \%$, $\mathrm{He}^{\prime}-75 \%$, and few $\%$ of heavier $\mathrm{C}^{\prime}, \mathrm{N}^{\prime}, \mathrm{O}$ ' etc.

- Mirror baryons as asymmetric/collisional/dissipative/atomic dark matter: M hydrogen recombination and M baryon acoustic oscillations?
- Easier formation and faster evolution of stars: Dark matter disk? Galaxy halo as mirror elliptical galaxy? Microlensing ? Neutron stars? Black Holes? Binary Black Holes? Central Black Holes?
B. Direct detection. M matter can interact with ordinary matter e.g. via kinetic mixing $\epsilon F^{\mu \nu} F_{\mu \nu}^{\prime}$, etc. Mirror helium as most abundant mirror matter particles (the region of DM masses below 5 GeV is practically unexplored). Possible signals from heavier nuclei $\mathrm{C}, \mathrm{N}, \mathrm{O}$ etc.
C. Oscillation phenomena between ordinary and mirror particles.

The most interesting interaction terms in $\mathcal{L}_{\text {mix }}$ are the ones which violate $B$ and $L$ of both sectors. Neutral particles, elementary (as e.g. neutrino) or composite (as the neutron or hydrogen atom) can mix with their mass degenerate (sterile) twins: matter disappearance (or appearance) phenomena can be observable in laboratories.
In the Early Universe, these $B$ and/or $L$ violating interactions can give primordial baryogenesis and dark matter genesis, with $\Omega_{B}^{\prime} / \Omega_{B}=1 \div 5$.

## Chapter I

(Fantast Beasts

## Chapter I

 andWhere to Find
Them)

## Neutrino - mirror neutrino mixings

## $B-L$ violation in O and M sectors: Active-sterile mixing

(Fantast Beasts and Where to Find Them)

Zurab Berezhian

## Summary

Introduction: Mirror Matter

- $\frac{1}{M}(I \bar{\phi})(I \bar{\phi})(\Delta L=2)$ - neutrino (seesaw) masses $m_{\nu} \sim v^{2} / M$ $M$ is the (seesaw) scale of new physics beyond EW scale.

- Neutrino -mirror neutrino mixing - (active - sterile mixing) $L$ and $L^{\prime}$ violation: $\frac{1}{M}(I \bar{\phi})(I \bar{\phi}), \frac{1}{M}\left(I^{\prime} \bar{\phi}^{\prime}\right)\left(I^{\prime} \bar{\phi}^{\prime}\right)$ and $\frac{1}{M}(I \bar{\phi})\left(I^{\prime} \bar{\phi}^{\prime}\right)$


Mirror neutrinos are natural candidates for sterile neutrinos:

Co-leptogenesis: B-L violating interactions between O and M worlds

Parallel/Mirror Dark World
(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction: Mirror Matter

L and $L^{\prime}$ violating operators $\frac{1}{M}(I \bar{\phi})(I \bar{\phi})$ and $\frac{1}{M}(I \bar{\phi})\left(I^{\prime} \bar{\phi}^{\prime}\right)$ lead to processes $I \phi \rightarrow \bar{I} \bar{\phi}(\Delta L=2)$ and $I \phi \rightarrow \bar{I}^{\prime} \bar{\phi}^{\prime}\left(\Delta L=1, \Delta L^{\prime}=1\right)$



After inflation, our world is heated and mirror world is empty: but ordinary particle scatterings transform them into mirror particles, heating also mirror world.

- These processes should be out-of-equilibrium
- Violate baryon numbers in both worlds, $B-L$ and $B^{\prime}-L^{\prime}$
- Violate also CP, given complex couplings

Green light to celebrated conditions of Sakharov

Parallel/Mirror Dark World
(Fantast Beasts and Where to Find Them)

Operators $\frac{1}{M}(I \bar{\phi})(I \bar{\phi})$ and $\frac{1}{M}(I \bar{\phi})\left(I^{\prime} \bar{\phi}^{\prime}\right)$ via seesaw mechanism heavy RH neutrinos $N_{j}$ with
Majorana masses $\frac{1}{2} M g_{j k} N_{j} N_{k}+$ h.c.


Complex Yukawa couplings $Y_{i j} l_{i} N_{j} \bar{\phi}+Y_{i j}^{\prime} l_{i}^{\prime} N_{j} \bar{\phi}^{\prime}+$ h.c.
$Z_{2}$ (Xerox) symmetry $\rightarrow Y^{\prime}=Y$,
$P Z_{2}$ (Mirror) symmetry $\rightarrow Y^{\prime}=Y^{*}$

## Co-leptogenesis: Mirror Matter as hidden

 Anti-Matter Z.B., arXiv:1602.08599(Fantast Beasts and Where to Find Them)

Hot O World $\longrightarrow$ Cold M World

$$
\begin{aligned}
& \frac{d n_{\mathrm{BL}}}{d t}+(3 H+\Gamma) n_{\mathrm{BL}}=\Delta \sigma n_{\mathrm{eq}}^{2} \\
& \frac{d n_{\mathrm{BL}}^{\prime}}{d t}+\left(3 H+\Gamma^{\prime}\right) n_{\mathrm{BL}}^{\prime}=-\Delta \sigma^{\prime} n_{\mathrm{eq}}^{2} \\
& \sigma(I \phi \rightarrow \bar{I} \bar{\phi})-\sigma(\bar{I} \bar{\phi} \rightarrow I \phi)=\Delta \sigma \\
& \begin{array}{l}
\sigma\left(I \phi \rightarrow \bar{I}^{\prime} \bar{\phi}^{\prime}\right)-\sigma\left(\bar{I} \bar{\phi} \rightarrow I^{\prime} \phi^{\prime}\right)=-\left(\Delta \sigma+\Delta \sigma^{\prime}\right) / 2 \quad \rightarrow \quad 0 \quad(\Delta \sigma=0) \\
\sigma\left(I \phi \rightarrow I^{\prime} \phi^{\prime}\right)-\sigma\left(\bar{I} \bar{\phi} \rightarrow \bar{I}^{\prime} \bar{\phi}^{\prime}\right)=-\left(\Delta \sigma-\Delta \sigma^{\prime}\right) / 2 \quad \rightarrow \quad \Delta \sigma \quad(0)
\end{array} \\
& \Delta \sigma=\operatorname{Im} \operatorname{Tr}\left[g^{-1}\left(Y^{\dagger} Y\right)^{*} g^{-1}\left(Y^{\prime \dagger} Y^{\prime}\right) g^{-2}\left(Y^{\dagger} Y\right)\right] \times T^{2} / M^{4} \\
& \Delta \sigma^{\prime}=\Delta \sigma\left(Y \rightarrow Y^{\prime}\right) \\
& \text { Mirror }\left(P Z_{2}\right): \quad Y^{\prime}=Y^{*} \quad \rightarrow \quad \Delta \sigma^{\prime}=-\Delta \sigma \quad \rightarrow \quad B, B^{\prime}>0 \\
& \operatorname{Xerox}\left(Z_{2}\right): \quad Y^{\prime}=Y \quad \rightarrow \quad \Delta \sigma^{\prime}=\Delta \sigma=0 \quad \rightarrow \quad B, B^{\prime}=0 \\
& \text { If } k=\left(\frac{\Gamma}{H}\right)_{T=T_{R}} \ll 1 \text {, neglecting } \Gamma \text { in eqs } \rightarrow \quad n_{B L}=n_{B L}^{\prime} \\
& \Omega_{B}^{\prime}=\Omega_{B} \simeq 10^{3} \frac{J M_{P} T_{R}^{3}}{M^{4}} \simeq 10^{3} \mathrm{~J}\left(\frac{T_{R}}{10^{11} \mathrm{GeV}}\right)^{3}\left(\frac{10^{13} \mathrm{GeV}}{M}\right)^{4}
\end{aligned}
$$

(Fantast Beasts and Where to Find Them)

$$
\text { If } k=\left(\frac{\Gamma_{2}}{H}\right)_{T=T_{R}} \sim 1 \text {, Boltzmann Eqs. }
$$

$$
\frac{d n_{\mathrm{BL}}}{d t}+(3 H+\Gamma) n_{\mathrm{BL}}=\Delta \sigma n_{\mathrm{eq}}^{2} \quad \frac{d n_{\mathrm{BL}}^{\prime}}{d t}+\left(3 H+\Gamma^{\prime}\right) n_{\mathrm{BL}}^{\prime}=\Delta \sigma n_{\mathrm{eq}}^{2}
$$

should be solved with $\Gamma$ :


$$
D(k)=\Omega_{B} / \Omega_{B}^{\prime}, \quad x(k)=T^{\prime} / T \text { for different } g_{*}\left(T_{R}\right) \text { and } \Gamma_{1} / \Gamma_{2}
$$

So we obtain $\Omega_{B}^{\prime}=5 \Omega_{B}$ when $m_{B}^{\prime}=m_{B}$ but $n_{B}^{\prime}=5 n_{B}$

- the reason: mirror world is colder


## Sign of mirror BA: Free Energy from DM ?

 and Where to Find Them)Zurab Berezhiani

Summary
Introduction: Mirror Matter

Chapter I:

Encounter of matter and antimatter leads to immediate (uncontrollable) annihilation which can be destructive

Annihilation can take place also between our matter and dark matter, but controllable by tuning of vacuum and magnetic conditions. Dark neutrons can be transformed into our antineutrons .... E.g. $n^{\prime} \rightarrow \bar{n}$ produces our antimatter from mirror DM

Two civilisations can agree to built scientific reactors and exchange neutrons ... and turn the energy produced by each reactor in 1000 times more energy for parallel world .. and all live happy and healthy ...
(Fantast Beasts and Where to Find Them)

First Part: Against Stupidity ...
Second Part: ...The Gods Themselves ...
Third Part: ... Contend in Vain?
"Mit der Dummheit kämpfen Götter selbst vergebens!" - Friedrich Schiller

## Chapter II

(Fantast Beasts

## Chapter II

 andWhere to Find
Them)

## Neutron - mirror neutron mixing

$B$ violating operators between O and M particles in $\mathcal{L}_{\text {mix }}$

Ordinary quarks $u, d \quad($ antiquarks $\bar{u}, \bar{d})$
Mirror quarks $u^{\prime}, d^{\prime} \quad\left(\right.$ antiquarks $\left.\bar{u}^{\prime}, \bar{d}^{\prime}\right)$

- Neutron -mirror neutron mixing - (Active - sterile neutrons)

$$
\frac{1}{M^{5}}(u d d)(u d d) \text { and } \frac{1}{M^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right) \quad(+ \text { h.c. })
$$



Oscillations $n(u d d) \leftrightarrow \bar{n}(\bar{u} \bar{d} \bar{d}) \quad(\Delta B=2)$ $n(u d d) \rightarrow \bar{n}^{\prime}\left(\bar{u}^{\prime} \bar{d}^{\prime} \bar{d}^{\prime}\right), n^{\prime}(u d d) \rightarrow \bar{n}(\bar{u} \bar{d} \bar{d}) \quad\left(\Delta B=1, \Delta B^{\prime}=-1\right)$

## Neutron- antineutron mixing

 and Where to Find Them)Majorana mass of neutron $\epsilon\left(n^{T} C n+\bar{n}^{T} C \bar{n}\right)$ violating $B$ by two units comes from six-fermions effective operator $\frac{1}{M^{5}}(u d d)(u d d)$


It causes transition $n(u d d) \rightarrow \bar{n}(\bar{u} \bar{d} \bar{d})$, with oscillation time $\tau=\epsilon^{-1}$
$\varepsilon=\langle n|(u d d)(u d d)|\bar{n}\rangle \sim \frac{\Lambda_{\mathrm{QCD}}^{6}}{M^{5}} \sim\left(\frac{100 \mathrm{TeV}}{M}\right)^{5} \times 10^{-25} \mathrm{eV}$
Key moment: $n-\bar{n}$ oscillation destabilizes nuclei:
$(A, Z) \rightarrow(A-1, \bar{n}, Z) \rightarrow(A-2, Z / Z-1)+\pi ' s$
Present bounds on $\epsilon$ from nuclear stability

$$
\begin{array}{llll}
\varepsilon<1.2 \times 10^{-24} \mathrm{eV} & \rightarrow & \tau>1.3 \times 10^{8} \mathrm{~s} & \text { Fe, Soudan } 2002 \\
\varepsilon<2.5 \times 10^{-24} \mathrm{eV} & \rightarrow & \tau>2.7 \times 10^{8} \mathrm{~s} & \text { O, SK } 2015
\end{array}
$$

## Neutron - mirror neutron mixing

Effective operator $\frac{1}{M^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right) \quad \rightarrow \quad$ mass mixing $\epsilon n C n^{\prime}+$ h.c. violating $B$ and $B^{\prime}$ - but conserving $B-B^{\prime}$

Beasts and Where to Find Them)

$\epsilon=\langle n|(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right)\left|\bar{n}^{\prime}\right\rangle \sim \frac{\Lambda_{\mathrm{QCD}}^{6}}{M^{5}} \sim\left(\frac{1 \mathrm{TeV}}{M}\right)^{5} \times 10^{-10} \mathrm{eV}$
Key observation: $n-\bar{n}^{\prime}$ oscillation cannot destabilise nuclei: $(A, Z) \rightarrow(A-1, Z)+n^{\prime}\left(p^{\prime} e^{\prime} \bar{\nu}^{\prime}\right)$ forbidden by energy conservation (In principle, it can destabilise Neutron Stars)
For $m_{n}=m_{n^{\prime}}, n-\bar{n}^{\prime}$ oscillation can be as fast as $\epsilon^{-1}=\tau_{n \bar{n}^{\prime}} \sim 1 \mathrm{~s}$ without contradicting experimental and astrophysical limits. (c.f. $\tau_{n \bar{n}^{\prime}}>2.5 \times 10^{8}$ s for neutron - antineutron oscillation)

Neutron disappearance $n \rightarrow \bar{n}^{\prime}$ and regeneration $n \rightarrow \bar{n}^{\prime} \rightarrow n$ can be searched at small scale 'Table Top' experiments

## Neutron - mirror neutron oscillation probability

(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction: Mirror Matter

Chapter :
Neutrino - mirror neutrino mixings

## Chapter II

 neutron - mirror neutron mixingChapter III:
$n-n^{\prime}$ and
Neutron Stars

$$
H=\left(\begin{array}{cc}
m_{n}+\mu_{n} \mathbf{B} \sigma & \epsilon \\
\epsilon & m_{n}+\mu_{n} \mathbf{B}^{\prime} \sigma
\end{array}\right)
$$

The probability of $n-n$ ' transition depends on the relative orientation of magnetic and mirror-magnetic fields. The latter can exist if mirror matter is captured by the Earth

$$
\begin{aligned}
& P_{B}(t)=p_{B}(t)+d_{B}(t) \cdot \cos \beta \\
& p(t)=\frac{\sin ^{2}\left[\left(\omega-\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega-\omega^{\prime}\right)^{2}}+\frac{\sin ^{2}\left[\left(\omega+\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega+\omega^{\prime}\right)^{2}} \\
& d(t)=\frac{\sin ^{2}\left[\left(\omega-\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega-\omega^{\prime}\right)^{2}}-\frac{\sin ^{2}\left[\left(\omega+\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega+\omega^{\prime}\right)^{2}} \\
& \text { where } \omega=\frac{1}{2}|\mu B| \text { and } \omega^{\prime}=\frac{1}{2}\left|\mu B^{\prime}\right| ; \tau \text { - oscillation time } \\
& A_{B}^{\text {det }}(t)=\frac{N_{-B}(t)-N_{B}(t)}{N_{-B}(t)+N_{B}(t)}=N_{\text {collis }} d_{B}(t) \cdot \cos \beta \leftarrow \text { assymetry }
\end{aligned}
$$

## $A$ and $E$ are expected to depend on magnetic field

(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction:
Mirror Matter
Chapter
Neutrino - mirror
neutrino mixings
Chapter II:
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars
E.g. assume $B^{\prime}=0.12$ Gauss


## Earth mirror magnetic field via the electron drag mechanism



Earth can accumulate some, even tiny amount of mirror matter due to Rutherford-like scattering of mirror matter due to photon-mirror photon kinetic mixing.
Rotation of the Earth drags mirror electrons but not mirror protons (ions) since the latter are much heavier.
Circular electric currents emerge which can generate magnetic field. Modifying mirror Maxwell equations by the source (drag) term, one gets $B^{\prime} \sim \epsilon^{2} \times 10^{15} \mathrm{G}$ before dynamo, and even larger after dynamo.

Such mechanism can also induce cosmological magnetic fields Z.B., Dolgov, Tkachev, 2013

## Experiments

(Fantast Beasts and Where to Find Them)

Several experiment were done, 3 by PSI group, most sensitive by the Serebrov's group at ILL, with 190 I beryllium plated trap for UCN


## Serebrov experiment III - Cheking PSI Anomaly

Parallel/Mirror Dark World

## (Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction: Mirror Matter

Chapter I: Neutrino - mirror neutrino mixings

Chapter II: neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars

## (1) <br> (Fill Counts vs B-field (nn') <br> $\square$ <br> Hira Colat veutrinn Sourch <br> 

Possible dependency?
$\rightarrow$ Does not affect nn' analysis as nn'-signature depends on $\mathrm{B}^{2!}$

$$
\text { Andreas Knechr B \& L Violetion Workshop, 20. -22. September } 2007
$$

$$
\begin{aligned}
& 0,9976 \pm 0,0020 \\
& 0,9986 \pm 0,0010 \\
& 0,9990 \pm 0,0010 \\
& 0,9958 \pm 0,0013
\end{aligned}
$$

```
1,0018\pm0,0013
0,9973 \pm0,0013
1,0012\pm0.0012
1,0019\pm0,0020
```

$\qquad$

## Serebrov's Fax

Parallel/Mirror
Dark World

## (Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction:
Mirror Matter
Chapter I:
Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing

Chapter IIt:
$n-n^{\prime}$ and
Neutron Stars


## Experimental Strategy

 and Where to Find Them)To store neutrons and to measure if the amount of the survived ones depends on the magnetic field applied.

- Fill the Trap with the UCN
- Close the valve
- Wait for $T_{S}(300 \mathrm{~s} . .$.
- Open the valve
- Count the survived Neutrons


10

Repeat this for different orientation and values of Magnetic field. $N_{B}\left(T_{S}\right)=N(0) \exp \left[-\left(\Gamma+R+\overline{\mathcal{P}}_{B} \nu\right) T_{S}\right]$

$$
\frac{N_{B 1}\left(T_{S}\right)}{N_{B 2}\left(T_{S}\right)}=\exp \left[\left(\overline{\mathcal{P}}_{B 2}-\overline{\mathcal{P}}_{B 1}\right) \nu T_{S}\right]
$$

So if we find that:
$A\left(B, T_{S}\right)=\frac{N_{B}\left(T_{S}\right)-N_{-B}\left(T_{S}\right)}{N_{B}\left(T_{S}\right)+N_{-B}\left(T_{S}\right)} \neq 0 \quad E\left(B, b, T_{S}\right)=\frac{N_{B}\left(T_{S}\right)}{N_{b}\left(T_{S}\right)}-1 \neq 0$

## Serebrov III - Drifts of detector and monitor counts

 and Where to Find Them)Zurab Berezhiani


## Serebrov III - magnetic field vertical

## (Fantast

 Beasts and Where to Find Them)Exp. sequence: $\left\{B_{-}, B_{+}, B_{+}, B_{-}, B_{+}, B_{-}, B_{-}, B_{+}\right\}, B=0.2 \mathrm{G}$


Analysis pointed out the presence of a signal:

$$
A(B)=(7.0 \pm 1.3) \times 10^{-4} \quad \chi_{/ d o f}^{2}=0.9 \longrightarrow 5.2 \sigma
$$

interpretable by $n \rightarrow n^{\prime}$ with $\tau_{n n^{\prime}} \sim 2-10 s^{\prime}$ and $B^{\prime} \sim 0.1 G$
Z.B. and Nesti, 2012

## Neutron - mirror neutron oscillation

## Letter

# Magnetic anomaly in UCN trapping: signal for neutron oscillations to parallel world? 

Zurab Berezhiani ${ }^{1,2, a}$, Fabrizio Nesti ${ }^{1}$<br>${ }^{1}$ Dipartimento di Fisica, Università dell'Aquila, Via Vetoio, 67100 Coppito, L'Aquila, Italy<br>${ }^{2}$ INFN, Laboratori Nazionali Gran Sasso, 67010 Assergi, L'Aquila, Italy

Received: 2 March 2012 / Published online: 11 April 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

THE EUROPEAN
Physical Journal C

## (Fantast

Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction: Mirror Matter

Chapter I: Neutrino - mirror neutrino mixings

Chapter II: neutron - mirror neutron mixing

Chapter III: $n-n^{\prime}$ and Neutron Stars


#### Abstract

Present experiments do not exclude that the neu tron $n$ oscillates, with an appreciable probability, into its invisible degenerate twin from a parallel world, the so-called mirror neutron $n^{\prime}$. These oscillations were searched experimentally by monitoring the neutron losses in ultra-cold neutron traps, where they can be revealed by the magnetic field dependence of $n-n^{\prime}$ transition probability. In this work we reanalyze the experimental data acquired by the group of A.P. Serebrov at Institute Laue-Langevin, and find a dependence at more than $5 \sigma$ away from the null hypothesis. This anomaly can be interpreted as oscillation of neutrons to mirror neutrons with a timescale of few seconds, in the presence of a mirror magnetic field order 0.1 G at the Earth. This result, if confirmed by future experiments, will have deepest consequences for fundamental particle physics, astrophysics and cosmology.


Parallel matter can be a viable candidate for dark matter [7-9]. Certain $B-L$ and CP violating processes between ordinary and mirror particles can generate the baryon asymmetries in both sectors [10-12] which scenario can naturally explain the relation $\Omega_{D} / \Omega_{B} \simeq 5$ between the dark and visible matter fractions in the Universe [13-16]. Such interactions can be mediated by heavy messengers coupled to both sectors, as right-handed neutrinos $[10-12]$ or extra gauge bosons/gauginos [17]. ${ }^{1}$ In the context of extra dimensions, ordinary and mirror sectors can be modeled as two parallel three-dimensional branes and particle processes between them mediated by the bulk modes or "baby branes" can be envisaged [24].

On the other hand, these interactions can induce mixing phenomena between ordinary and mirror particles. In fact, any neutral particle, elementary or composite, may oscillate

Serebrov II - magnetic field Horizontal

$$
\left\{b_{-}, B_{-}, B_{+}, b_{+}, b_{+}, B_{+}, B_{-}, b_{-}\right\}, B=0.2 \mathrm{G}, b<10^{-3} \mathrm{G}
$$

(Fantast Beasts and Where to Find Them)




## Serebrov 2007 - magnetic field Horizontal

## (Fantast

 Beasts and Where to Find Them)Zurab Berezhiani

Summary
Introduction:
Mirror Matter
Chapter I:
Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars





## My own neasurements 2014 at ILL - with Biondi,

 Geltenbort et al.
## (Fantast Beasts and Where to Find Them)

Zurab Berezhiani

## Summary

Introduction:

## Mirror Matter

Chapter I:
Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars


Exp. limits on $n-n^{\prime}$ oscillation time - ZB et al, Eur. Phys. J. C. 2018

Parallel/Mirror Dark World
(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

## Summary

Introduction: Mirror Matter

## Free Neutrons: Where to find Them ?

(Fantast Neutrons are making $1 / 7$ fraction of baryon mass in the Universe. Beasts and Where to Find Them)

But most of neutrons bound in nuclei ....
$n \rightarrow \bar{n}^{\prime}$ or $n^{\prime} \rightarrow \bar{n}$ conversions can be seen only with free neutrons.
Free neutrons are present only in

- Reactors and Spallation Facilities
- In Cosmic Rays
- During BBN epoch (fast $n^{\prime} \rightarrow \bar{n}$ can solve Lithium problem)
- Transition $n \rightarrow \bar{n}^{\prime}$ can take place for (gravitationally) Neutron Stars - conversion of NS into mixed ordinary/mirror NS


## Chapter III

(Fantast
Beasts and
Where to Find
Them)

## Chapter III

Zurab Berezhiani
$n-n^{\prime}$ and Neutron Stars
Z.B., Biondi, Mannarelli, Tonelli

## Neutron Stars: $n-n^{\prime}$ conversion

Parallel/Mirror Dark World
(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Two states, $n$ and $n^{\prime}$

$$
H=\left(\begin{array}{cc}
m_{n}+V_{n}+\mu_{n} \mathbf{B} \sigma & \varepsilon \\
\varepsilon & m_{n}^{\prime}+V_{n}^{\prime}-\mu_{n} \mathbf{B}^{\prime} \sigma
\end{array}\right)
$$

$$
n_{1}=\cos \theta n+\sin \theta n^{\prime}, \quad n_{2}=\sin \theta n-\cos \theta n^{\prime}, \quad \theta \simeq \frac{\epsilon}{V_{n}-V_{n}^{\prime}}
$$

$$
n n \rightarrow n n^{\prime} \text { with probability } P_{n n^{\prime}}=\frac{1}{2} \sin ^{2} 2 \theta_{n n^{\prime}}=2\left(\frac{\epsilon}{E_{F}-E_{F}^{\prime}}\right)^{2}
$$

$$
E_{F} \simeq\left(n / n_{s}\right)^{2 / 3} \times 60 \mathrm{MeV}, \quad n_{s}=0.16 \mathrm{fm}^{-3} \quad E_{F}^{\prime}=\ldots . n^{\prime}
$$

$$
\Gamma_{0}=\left\langle\sigma v_{F}\right\rangle n \eta_{0} P_{n n^{\prime}}(0) \simeq\left(\frac{a}{1 \mathrm{fm}}\right)^{2}\left(\frac{\varepsilon}{10^{-14} \mathrm{eV}}\right)^{2} \times 10^{-13} \mathrm{yr}^{-1}
$$



$$
\frac{d N_{1}(t)}{d t}=-\Gamma N_{1} \quad \frac{d N_{2}(t)}{d t}=\Gamma N_{1} \quad N_{1}+N_{2}=\text { Const }
$$

## Mixed Neutron Stars: TOV and $M-R$ relations

Parallel/Mirror
Dark World
(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction: Mirror Matter

Chapter I:
Neutrino - mirror neutrino mixings

Chapter II
neutron - mirror neutron mixing

Chapter III: $n-n^{\prime}$ and Neutron Stars

$$
\begin{aligned}
& g_{\mu \nu}=\operatorname{diag}\left(-g_{t t}, g_{r r}, r^{2}, r^{2} \sin ^{2} \theta\right) \quad g_{t t}=e^{2 \phi}, g_{r r}=\frac{1}{1-2 m / r} \\
& T_{\mu \nu}=T_{\mu \nu}^{1}+T_{\mu \nu}^{2}=\operatorname{diag}\left(\rho g_{t t}, p g_{r r}, p r^{2}, p r^{2} \sin ^{2} \theta\right) \\
& \quad \rho=\rho_{1}+\rho_{2} \& p=p_{1}+p_{2}, \quad p_{\alpha}=F\left(\rho_{\alpha}\right)
\end{aligned}
$$

$$
\frac{d m}{d r}=4 \pi r^{2} \rho \rightarrow \frac{d m_{1,2}}{d r}=4 \pi r^{2} \rho_{1,2} \quad m=m_{1}+m_{2}
$$

$$
\frac{d \phi}{d r}=-\frac{1}{\rho+p} \frac{d p}{d r} \rightarrow \frac{d p_{1} / d r}{\rho_{1}+p_{1}}=\frac{d p_{2} / d r}{\rho_{2}+p_{2}}
$$

$$
\frac{d p}{d r}=(\rho+p) \frac{m+4 \pi p r^{3}}{2 m r-r^{2}}
$$

$$
\left(m_{1} \neq 0, m_{2}=0\right)_{\text {in }} \rightarrow\left(m_{1}=m_{2}\right)_{\mathrm{fin}} \quad r \rightarrow \frac{r}{\sqrt{2}}, \quad m_{\alpha} \rightarrow \frac{m_{\alpha}}{2 \sqrt{2}}
$$



$\sqrt{2}$ rule: $\quad M_{\text {mix }}^{\max }=\frac{1}{\sqrt{2}} M_{\mathrm{NS}}^{\max } \quad R_{\text {mix }}(M)=\frac{1}{\sqrt{2}} R_{\mathrm{NS}}(M)$

## Neutron Stars: observational $M-R$

Parallel/Mirror Dark World

## (Fantast

 Beasts and Where to Find Them)Zurab Berezhiani

Summary
Introduction: Mirror Matter

Chapter I: Neutrino - mirror neutrino mixings

Chapter II neutron - mirror neutron mixing

Chapter III: $n-n^{\prime}$ and Neutron Stars


The combined constraints at the $68 \%$ confidence level over the neutron star mass and radius obtained from (Left) all neutron stars in low-mass X-ray binaries during quiescence (Right) all neutron stars with thermonuclear bursts. The light grey lines show mass-relations corresponding to a few representative equations of state (see Section 4.1 and Fig. 7 for detailed descriptions.)

## Neutron Stars: Evolution to mixed star

(Fantast
Beasts and Where to Find Them)

Zurab Berezhian

Summary

Introduction: Mirror Matter

Chapter I:
Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing

$$
\frac{d N_{1}(t)}{d t}=-\Gamma N_{1} \quad \frac{d N_{2}(t)}{d t}=\Gamma N_{1} \quad N_{1}+N_{2}=\text { Const. }
$$

Initial state $N_{1}=N_{0}, N_{2}=0 \quad$ final state $N_{1}=N_{2}=N_{0} / 2$


NS-NS merger: can be at the origin of heavy *trans-Iron* elements

## Neutron Stars: mass distribution

## (Fantast Beasts and Where to Find Them)

Zurab Berezhiani

## Summary

Introduction:
Mirror Matter
Chapter I:
Neutrino - mirror neutrino mixings

Chapter It:
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars


## Chapter III

(Fantast Beasts and
Where to Find
Them)

## Chapter IV

Zurab Berezhiani

## $n-n^{\prime}$ and UHECR

Z.B., Biondi, Gazizov

## UHECR and GZK cutoff

Parallel/Mirror Dark World
(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction: Mirror Matter

Chapter I:
Neutrino - mirror neutrino mixings

Chapter II: neutron - mirror neutron mixing

Chapter III: $n-n^{\prime}$ and Neutron Stars

## GZK cutoff:

Photo-pion production on the CMB if $E>E_{\mathrm{GZK}} \approx \frac{m_{\pi} m_{p}}{\varepsilon_{\mathrm{CMB}}} \approx 6 \times 10^{19} \mathrm{eV}$ $p+\gamma \rightarrow p+\pi^{0}$ (or $n+\pi^{+}$), $\quad l_{\text {mfp }} \sim 5 \mathrm{Mpc}$ for $E>10^{20} \mathrm{eV}=100 \mathrm{EeV}$ Neutron decay: $n \rightarrow p+e+\bar{\nu}_{e}, \quad l_{\text {dec }}=\left(\frac{E}{100 \mathrm{EeV}}\right) \mathrm{Mpc}$ Neutron on CMB scattering: $n+\gamma \rightarrow n+\pi^{0}$ (or $p+\pi^{-}$)


## UHECR and GZK cutoff

 and Where to Find Them)Two giant detectors see UHECR spectra different at $E>E_{G Z K}$
Pierre Auger Observatory (PAO) - South hemisphere Telescope Array (TA) - North hemisphere

At $E<E_{\mathrm{GZK}}$ two spectra are perfectly coincident by relative energy shift $\approx 8 \%$



+ older detectors: AGASA, HiRes, etc. (all in north hemisphere)
Events with $E>100 \mathrm{EeV}$ were observed
Cosmic Zevatrons exist in the Universe - but where is GZK cutoff?


## But also other discrepancies are mounting ...

Parallel/Mirror
Dark World

Beasts and Where to Find Them)

- Who are carriers of UHECR ?

PAO and TA see different chemical content: TA is compatible with protons at all energies, PAO insists UHECR become heavier nuclei above $E>10$ EeV or so - perhaps new physics ?

- Different anistropies from North and South ?

TA excludes isotropic distribution at $E>57 \mathrm{EeV}$, observes hot spot for events $E>E_{\text {GZK }}$ (which spot is cold for $E<E_{G Z K}$ ). PAO anisotropies not so prominent: warm spot around Cen A, but observe dipole for $E>10$ EeV - are two skies realy different ?

- From where highest energy events do come ?
$E>100 \mathrm{EeV}$ are expected from local supercluster (Virgo, UM, PP etc.) and closeby structures. But they do not come from these directions. TA observes small angle correlation for $E>100 \mathrm{EeV}$ events (2 doublets), which may indicate towards strong source - from where they come?
- Excess of cosmogenic photons ?

Standard GZK mechanism of UHECR produces too much cascades contradicts to Fermi-LAT photon spectrum at $E \sim 1 \mathrm{TeV}$ - local Fog ?

## From where highest energy CR are expected ?

## (Fantast

Beasts and Where to Find Them)


## $n-n^{\prime}$ oscillation and UHECR propagation

## (Fantast

 Beasts and Where to Find Them)
Z. Berezhiani, L. Bento, Fast neutron - Mirror neutron oscillation and ultra high energy cosmic rays, Phys. Lett. B 635, 253 (2006).
A. $p+\gamma \rightarrow p+\pi^{0}$ or $p+\gamma \rightarrow n+\pi^{+} \quad P_{p p, p n} \approx 0.5 \quad l_{\operatorname{mfp}} \sim 5 \mathrm{Mpc}$
B. $n \rightarrow n^{\prime} \quad P_{n n^{\prime}} \simeq 0.5 \quad l_{\text {osc }} \sim\left(\frac{E}{100 \mathrm{EeV}}\right) \mathrm{kpc}$
C. $n^{\prime} \rightarrow p^{\prime}+e^{\prime}+\bar{\nu}_{e}^{\prime} \quad l_{\mathrm{dec}} \approx\left(\frac{E}{100 \mathrm{EeV}}\right) \mathrm{Mpc}$
D. $p^{\prime}+\gamma^{\prime} \rightarrow p^{\prime}+\pi^{\prime 0}$ or $p^{\prime}+\gamma^{\prime} \rightarrow n^{\prime}+\pi^{\prime+} \quad l_{\text {mfp }}^{\prime} \sim\left(T / T^{\prime}\right)^{3} l_{\mathrm{mfp}} \gg 5 \mathrm{Mpc}$

## $n-n^{\prime}$ oscillation in the UHECR propagation

(Fantast
Beasts and
Where to Find Them)

Baryon number is not conserved in propagation of the UHECR

$$
H=\left(\begin{array}{cc}
m_{n}+\mu_{n} \mathbf{B} \sigma & \epsilon \\
\epsilon & m_{n}+\mu_{n} \mathbf{B}^{\prime} \sigma
\end{array}\right)
$$

In the intergalactic space magnetic fields are extremely small.
But for relativistic neutrons transverse component of $B$ is enhanced by Lorentz factor: $\quad B_{\mathrm{tr}}=\gamma B \quad\left(\gamma \sim 10^{11}\right.$ for $\left.E \sim 100 \mathrm{EeV}\right)$

Average oscillation probability: $P_{n n^{\prime}}=\frac{1}{1+q(E)}$
$q=0.45 \times\left(\frac{\tau_{n n^{\prime}}}{1 \mathrm{~s}}\right)^{2} \times\left(\frac{B_{\mathrm{tr}}-B_{\mathrm{tr}}^{\prime}}{1 \mathrm{fG}}\right)^{2} \times\left(\frac{E}{100 \mathrm{EeV}}\right)^{2}$
If $q(E)<1, \quad n-n^{\prime}$ oscillation becomes effective $\frac{n_{\text {CMB }}^{\prime}}{n_{\mathrm{CMB}}}=\left(\frac{T^{\prime}}{T}\right)^{3} \ll 1 \quad \frac{n_{\mathrm{EBL}}^{\prime}}{n_{\text {EBL }}} \sim 1 \quad$ M-star formation \& evolution

## Earlier (than GZK) cutoff in cosmic rays

 and Where to Find Them)Z.B. and Gazizov, Neutron Oscillations to Parallel World: Earlier End to the Cosmic Ray Spectrum? Eur. Phys. J. C 72, 2111 (2012)

Baryon number is not conserved in propagation of the UHECR


## Ordinary and Mirror UHECR

Parallel/Mirror
Dark World

## (Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction:
Mirror Matter

Chapter I:
Neutrino - mirror neutrino mixings

Chapter II
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars


## Swiss Cheese Model: Mirror CRs are transformed into ordinaries in nearby Voids.

Parallel/Mirror
Dark World
(Fantast Beasts and Where to Find Them)
$n \rightarrow n^{\prime}$ probability depends on magnetic field in Void: $P_{n n^{\prime}}=\frac{1}{1+q(E)}$ Adjacent Void (0-50 Mpc) $\quad q=0.5 \times\left(\frac{\tau_{n n^{\prime}}}{1 \mathrm{~s}}\right)^{2}\left(\frac{B_{\mathrm{tr}}-B_{\mathrm{tr}}^{\prime}}{1 \mathrm{fG}}\right)^{2}\left(\frac{E}{100 \mathrm{EeV}}\right)^{2}$


## More distant Void (50-100 Mpc)

## (Fantast

 Beasts and Where to Find Them)Zurab Berezhiani

Summary
Introduction: Mirror Matter

Chapter I:
Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars


Is northern sky (TA) is more "voidy" than the Southern sky (PAO) ?

## Arrival directions TA and PAO events of $E>100 \mathrm{EeV}$

Parallel/Mirror Dark World

- TA 2008-14 $E>100 \mathrm{EeV}, \quad 80 \div 100 \mathrm{EeV}, \quad 57 \div 80 \mathrm{EeV}$
- Pierre Auger 2004-14 .... the same for $1.1 \times E$
(Fantast
Beasts and Where to Find Them)

Zurab Berezhiani

## Summary

Introduction:
Mirror Matter
Chapter I:
Neutrino - mirror
neutrino mixings
Chapter II
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and Neutron Stars


## TA events: autocorrelations \& with tracers



## Auger events: autocorrelations \& with tracers



## Are North Sky and South Sky different?

(Fantast Beasts and Where to Find Them)


Figure 7. Hockey Puck plot-a full cylinder section-of 2MRS in the north celestial cap. The view is looking downward from the NCP, the thickness of the "puck" is $8000 \mathrm{~km} \mathrm{~s}^{-1}$, and its radius is $15,000 \mathrm{~km} \mathrm{~s}^{-1}$.

## Are South Sky and North Sky different?

## (Fantast Beasts and Where to Find Them)

Zurab Berezhiani

## Summary

ntroduction:
Mirror Matter

Chapter I:
Neutrino - mirror
neutrino mixings
Chapter II
neutron - mirror
neutron mixing

$n-n^{\prime}$ and
Neutron Stars

## Backup

(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction:
Mirror Matter
Chapter I
Neutrino - mirror
neutrino mixings
Chapter II:
neutron - mirror
neutron mixing
Chapter III:
$n-n^{\prime}$ and
Neutron Stars

## Backup

## Cosmogenic gammas vs Fermi-LAT IGRB spectrum

(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction:
Mirror Matter
Chapter I:
Neutrino - mirror
neutrino mixings
Chapter II:
neutron - mirror neutron mixing

Chapter II:
$n-n^{\prime}$ and
Neutron Stars


## Serenpidity:

 and Where to Find Them)- Have you relations with other (fundamental) problems? Yes
- Do you manage to match your $\Omega$ to $5 \Omega_{B}$ ? Yes
- Are you cold? Or self-interacting \& dissipative? Depends when...
- Are you neutral? Or you have electric charges? Depends which...
- Do you agree with astrophysical tests (BBN, CMB, LSS, ...) ? Yes
- Can you form halos, stars \& massive Black Holes? Yes
- Are you directly detectable? Can you be converted in visible? Yes
- Do you send indirect signals via cosmic rays \& gammas? Yes
- Can you be produced at LHC or other experimental facilities? Yes
- Let me guess, is your name Susy? No! but I know her very well
- Are you heavy or light? Well, I'm just normal ...
- Are you stable? Stable enough... but my longevity also has limits
- Are you really dark? Well, it's relative ... to someone I'm blond
- Are you single? I'm a family ...


## Why $\Omega_{D} / \Omega_{B} \sim 1$ ?

Parallel/Mirror
Dark World
(Fantast
Beasts and Where to Find Them)

Visible matter from Baryogenesis (Sakharov) $B(B-L) \& C P$ violation, Out-of-Equilibrium
$\rho_{B}=m_{B} n_{B}, \quad m_{B} \simeq 1 \mathrm{GeV}, \quad \eta=n_{B} / n_{\gamma} \sim 10^{-9}$
$\eta$ is model dependent on several factors:
coupling constants and CP-phases, particle degrees of freedom, mass scales and out-of-equilibrium conditions, etc.

Dark matter: $\rho_{D}=m_{X} n_{X}$, but $m_{X}=$ ? , $n_{X}=$ ?

$$
\text { and why } m_{X} n_{X}=5 m_{B} n_{B} ?
$$

$n_{X}$ is model dependent: DM particle mass and interaction strength (production and annihilation cross sections), freezing conditions, etc.

- Axion
- Neutrinos
- Sterile $\nu^{\prime}$
- WIMP
- WimpZilla
- $m_{a} \sim \mathrm{meV} \quad n_{a} \sim 10^{4} n_{\gamma} \quad-\mathrm{CDM}$
- $m_{\nu} \sim \mathrm{eV} \quad n_{\nu} \sim n_{\gamma} \quad-\operatorname{HDM}(\times)$
- $m_{\nu^{\prime}} \sim \mathrm{keV} \quad n_{\nu^{\prime}} \sim 10^{-3} n_{\nu} \quad-\mathrm{WDM}$
- $m_{X} \sim \mathrm{TeV} \quad n_{X} \sim 10^{-3} n_{B} \quad-\mathrm{CDM}$
- $m_{X} \sim \mathrm{ZeV} \quad n_{X} \sim 10^{-12} n_{B} \quad-\mathrm{CDM}$


## How these Fine Tunings look ...

Parallel/Mirror
Dark World
(Fantast Beasts and Where to Find Them)

$$
m_{X} \sim 10^{3} m_{B}
$$

$$
n_{X} \sim 10^{-3} n_{B}
$$

Fine Tuning?

$$
m_{X} n_{X} \sim m_{B} n_{B}
$$



$$
\begin{aligned}
& m_{a} n_{a} \sim m_{B} n_{B} \\
& m_{a} \sim 10^{-13} m_{B} \\
& n_{a} \sim 10^{13} n_{B} \\
& \text { Fine Tuning? }
\end{aligned}
$$

B-cogenesis


$$
\begin{aligned}
& m_{B^{\prime}} n_{B^{\prime}} \sim m_{B} n_{B} \\
& m_{B^{\prime}} \sim m_{B} \\
& n_{B^{\prime}} \sim n_{B} \\
& \quad \text { Natural ? }
\end{aligned}
$$

Two different New Physics for B-genesis and DM ?
Or co-genesis by the same Physics explaining why $\Omega_{D M} \sim \Omega_{B}$ ?

Can Mirror stars be progenitors of gravitational Wave bursts GW150914 etc. ?

Parallel/Mirror Dark World

## (Fantast

 Beasts and Where to Find Them)Picture of Galactic halos as mirror ellipticals (Einasto density profile), O matter disk inside ( M stars $=$ Machos).
Microlensing limits: $f \sim 20-40 \%$ for $M=1-10 M_{\odot}$, $f \sim 100 \%$ is allowed for $M=20-200 M_{\odot} \quad$ but see Brandt '05


GW events without any optical counterpart
point towards massive BH compact binaries, $M \sim 10-30 M_{\odot}$ and radius $R \sim 10 R_{\odot}$

How such objects can be formed ?

M matter: 25 \% Hydrogen vs 75 \% Helium: M stars more compact, less opaque, less mass loses by stellar wind and evolving much faster. Appropriate for forming such BH binaries ?
(Fantast
Beasts and Where to Find Them)

- Photon-mirror photon kinetic mixing $\epsilon F^{\mu \nu} F_{\mu \nu}^{\prime}$ Experimental limit $\epsilon<4 \times 10^{-7}$ Cosmological limit
$\epsilon<5 \times 10^{-9}$
Makes mirror matter nanocharged $(q \sim \epsilon)$
A promising portal for DM direct detection Foot, 2003


Mirror atoms: He - 75 \%, $\mathrm{C}^{\prime}, \mathrm{N}^{\prime}, \mathrm{O}^{\prime}$ etc. few \% Rutherford-like scattering

$$
\begin{aligned}
& \frac{d \sigma_{A A^{\prime}}}{d \Omega}=\frac{\left(\epsilon \alpha Z Z^{\prime}\right)^{2}}{4 \mu_{A A^{\prime}}^{2} v^{4} \sin ^{4}(\theta / 2)} \\
& \text { or } \\
& \frac{d \sigma_{A A^{\prime}}}{d E_{R}}=\frac{2 \pi\left(\epsilon \alpha Z Z^{\prime}\right)^{2}}{M_{A} v^{2} E_{R}^{2}}
\end{aligned}
$$



## OM-MM interactions in the Early Universe after recombination

Parallel/Mirror Dark World

After recombination fractions $\sim 10^{-4}$ of OM and $\sim 10^{-3}$ of MM remains ionized. $\gamma-\gamma^{\prime}$ kinetic mixing $\rightarrow$ Rutherford scatterings $e p^{\prime} \rightarrow e p^{\prime}, e e^{\prime} \rightarrow e e^{\prime}$ etc

Relative motion (rotation) of O and M matter drags electrons but not protons/ions which are much heavier. So circular electric currents emerge which can generate magnetic field. MHD equations with the source (drag) term induces magnetic seeds $B, B^{\prime} \sim 10^{-15} \mathrm{G}$ in galaxies/clusters then amplified by dynamo. So magnetic fields $\sim \mu \mathrm{G}$ can be formed in very young galaxies Z.B., Dolgov, Tkachev, 2013

MM capture by Earth can induce mirror magnetic field in the Earth, even bigger than ordinary 0.5 G .

New EDGES measurements of 21 cm emission (T-S hydrogen) indicates that at redshift $z \sim 17$ baryons were factor 2 cooler than predicted: if true, it can be beautiful implication of OM matter cooling (momentum transfer) via their Rutherford collisions with (cooler) MM

Mirror matter is a hidden antimatter: antimatter in the cosmos?

Parallel/Mirror Dark World
(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction: Mirror Matter

Chapter Neutrino - mirror neutrino mixings

In mirror cosmic rays, disintegration of mirror nuclei by galactic UV background or in scatterings with mirror gas, frees out mirror neutrons which the oscillate into our antineutron, $n^{\prime} \rightarrow \bar{n}$, which then decays as $\bar{n} \rightarrow \bar{p}+\bar{e}+\nu_{e}$.
so we get antiprotons (positrons), with spectral index similar to that of protons in our cosmic rays ?


## Free neutron- antineutron oscillation

 and Where to Find Them)Two states, $n$ and $\bar{n}$

$$
H=\left(\begin{array}{cc}
m_{n}+\mu_{n} \mathbf{B} \sigma & \varepsilon \\
\varepsilon & m_{n}-\mu_{n} \mathbf{B} \sigma
\end{array}\right)
$$

Oscillation probability $P_{n \bar{n}}(t)=\frac{\varepsilon^{2}}{\omega_{B}^{2}} \sin ^{2}\left(\omega_{B} t\right), \quad \omega_{B}=\mu_{n} B$
If $\omega_{B} t \gg 1$, then $P_{n \bar{n}}(t)=\frac{1}{2}\left(\varepsilon / \omega_{B}\right)^{2}=\frac{(\varepsilon t)^{2}}{\left(\omega_{B} t\right)^{2}}$
If $\omega_{B} t<1$, then $P_{n \bar{n}}(t)=(t / \tau)^{2}=(\varepsilon t)^{2}$
"Quasi-free" regime: for a given free flight time $t$, magnetic field should be properly suppressed to achieve $\omega_{B} t<1$.
More suppression makes no sense !

Exp. Baldo-Ceolin et al, 1994 (ILL, Grenoble) : $t \simeq 0.1 \mathrm{~s}, \quad B<100 \mathrm{nT}$ $\tau>2.7 \times 10^{8} \rightarrow \quad \varepsilon<7.7 \times 10^{-24} \mathrm{eV}$
At ESS 2 orders of magnitude better sensitivity can be achieved, down to $\varepsilon \sim 10^{-25} \mathrm{eV}$

Neutron - mirror neutron mixing and Where to Find Them)

The Mass Mixing $\epsilon\left(n C n^{\prime}+\right.$ h.c. ) comes from six-fermions effective operator $\frac{1}{M^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right), \quad \mathrm{M}$ is the scale of new physics violating $B$ and $B^{\prime}$ - but conserving $\quad B-B^{\prime}$

$\epsilon=\langle n|(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right)\left|n^{\prime}\right\rangle \sim \frac{\Lambda_{\mathrm{QCD}}^{6}}{M^{5}} \sim\left(\frac{10 \mathrm{TeV}}{M}\right)^{5} \times 10^{-15} \mathrm{eV}$
Key observation: $n-n^{\prime}$ oscillation cannot destabilise nuclei: $(A, Z) \rightarrow(A-1, Z)+n^{\prime}\left(p^{\prime} e^{\prime} \bar{\nu}^{\prime}\right)$ forbidden by energy conservation

Surprisingly, $n-\bar{n}^{\prime}$ oscillation can be as fast as $\epsilon^{-1}=\tau_{n n^{\prime}} \sim 1 \mathrm{~s}$, without contradicting any experimental and astrophysical limits. (c.f. $\tau_{n \bar{n}}>2.5 \times 10^{8} \mathrm{~s}$ for neutron - antineutron oscillation) Disappearance $n \rightarrow \bar{n}^{\prime}$ (regeneration $n \rightarrow \bar{n}^{\prime} \rightarrow n$ ) can be searched at small scale 'Table Top' experiments

## Neutron - mirror neutron oscillation probability

(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

## Summary

Introduction: Mirror Matter

$$
H=\left(\begin{array}{cc}
m_{n}+\mu_{n} \mathbf{B} \sigma & \epsilon \\
\epsilon & m_{n}+\mu_{n} \mathbf{B}^{\prime} \sigma
\end{array}\right)
$$

The probability of $n-n$ ' transition depends on the relative orientation of magnetic and mirror-magnetic fields. The latter can exist if mirror matter is captured by the Earth

$$
\begin{aligned}
& P_{B}(t)=p_{B}(t)+d_{B}(t) \cdot \cos \beta \\
& p(t)=\frac{\sin ^{2}\left[\left(\omega-\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega-\omega^{\prime}\right)^{2}}+\frac{\sin ^{2}\left[\left(\omega+\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega+\omega^{\prime}\right)^{2}} \\
& d(t)=\frac{\sin ^{2}\left[\left(\omega-\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega-\omega^{\prime}\right)^{2}}-\frac{\sin ^{2}\left[\left(\omega+\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega+\omega^{\prime}\right)^{2}} \\
& \text { where } \omega=\frac{1}{2}|\mu B| \text { and } \omega^{\prime}=\frac{1}{2}\left|\mu B^{\prime}\right| ; \tau \text { - oscillation time } \\
& A_{B}^{\text {det }}(t)=\frac{N_{-B}(t)-N_{B}(t)}{N_{-B}(t)+N_{B}(t)}=N_{\text {collis }} d_{B}(t) \cdot \cos \beta \leftarrow \text { assymetry }
\end{aligned}
$$

## Experimental limits on $n-n^{\prime}$ oscillation time

(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

## Summary

Introduction:
Mirror Matter
Chapter
Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing


## $A$ and $E$ are expected to depend on magnetic field

(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

## Summary

Introduction:
Mirror Matter
Chapter
Neutrino - mirror
neutrino mixings
Chapter II:
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars
E.g. assume $B^{\prime}=0.12$ Gauss


## Experimental Strategy

 and Where to Find Them)Zurab Berezhiani

To store neutrons and to measure if the amount of the survived ones depends on the magnetic field applied.

- Fill the Trap with the UCN
- Close the valve
- Wait for $T_{S}(300 \mathrm{~s} \ldots)$
- Open the valve
- Count the survived Neutrons


10

Repeat this for different orientation and values of Magnetic field. $N_{B}\left(T_{S}\right)=N(0) \exp \left[-\left(\Gamma+R+\overline{\mathcal{P}}_{B} \nu\right) T_{S}\right]$

$$
\frac{N_{B 1}\left(T_{S}\right)}{N_{B 2}\left(T_{S}\right)}=\exp \left[\left(\overline{\mathcal{P}}_{B 2}-\overline{\mathcal{P}}_{B 1}\right) \nu T_{S}\right]
$$

So if we find that:
$A\left(B, T_{S}\right)=\frac{N_{B}\left(T_{S}\right)-N_{-B}\left(T_{S}\right)}{N_{B}\left(T_{S}\right)+N_{-B}\left(T_{S}\right)} \neq 0 \quad E\left(B, b, T_{S}\right)=\frac{N_{B}\left(T_{S}\right)}{N_{b}\left(T_{S}\right)}-1 \neq 0$

## Experiments

(Fantast Beasts and Where to Find Them)

Several experiment were done, 3 by PSI group, most sensitive by the Serebrov's group at ILL, with 190 I beryllium plated trap for UCN


## Serebrov - Cheking PSI Anomaly

Parallel/Mirror Dark World

## (Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction:
Mirror Matter
Chapter I:
Neutrino - mirror neutrino mixings

Chapter II
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars

## "'" <br> Counts vs B-field ( $n n^{\prime}$ ) <br> $\square$ <br> Ultra colat Neurmen Sourct <br>  <br> Possible dependency?

$\rightarrow$ Does not affect nn' analysis as nn'-signature depends on $\mathrm{B}^{2!}$

$$
\text { Andreas Knechr B \& L Violetion Workshop, 20. -22. September } 2007
$$

$$
\begin{aligned}
& 0,9976 \pm 0,0020 \\
& 0,9986 \pm 0,0010 \\
& 0,9990 \pm 0,0010 \\
& 0,9958 \pm 0,0013
\end{aligned}
$$

$$
\begin{aligned}
& 1,0018 \pm 0,0013 \\
& 0,9973 \pm 0,0013 \\
& 1,0012 \pm 0,0012 \\
& 1,0019 \pm 0,0020
\end{aligned}
$$

## Serebrov experiment III - 1st Fax

Parallel/Mirror
Dark World

## (Fantast Beasts and Where to Find Them)

Zurab Berezhiani

Summary
ntroduction:
Mirror Matter
Chapter I:
Neutrino - mirror neutrino mixings

Chapter II
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars


## Serebrov experiment III - 2nd Fax

## (Fantast <br> Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction:
Mirror Matter
Chapter I:
Neutrino - mirror
neutrino mixings
Chapter II
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars


## Neutron - mirror neutron oscillation

## Letter

# Magnetic anomaly in UCN trapping: signal for neutron oscillations to parallel world? 

Zurab Berezhiani ${ }^{1,2, a}$, Fabrizio Nesti ${ }^{1}$<br>${ }^{1}$ Dipartimento di Fisica, Università dell'Aquila, Via Vetoio, 67100 Coppito, L'Aquila, Italy<br>${ }^{2}$ INFN, Laboratori Nazionali Gran Sasso, 67010 Assergi, L'Aquila, Italy

Received: 2 March 2012 / Published online: 11 April 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

THE EUROPEAN
Physical Journal C

## (Fantast

Beasts and Where to Find Them)

Zurab Berezhiani

Summary
Introduction: Mirror Matter

Chapter I: Neutrino - mirror neutrino mixings

Chapter II: neutron - mirror neutron mixing

Chapter III: $n-n^{\prime}$ and Neutron Stars


#### Abstract

Present experiments do not exclude that the neu tron $n$ oscillates, with an appreciable probability, into its invisible degenerate twin from a parallel world, the so-called mirror neutron $n^{\prime}$. These oscillations were searched experimentally by monitoring the neutron losses in ultra-cold neutron traps, where they can be revealed by the magnetic field dependence of $n-n^{\prime}$ transition probability. In this work we reanalyze the experimental data acquired by the group of A.P. Serebrov at Institute Laue-Langevin, and find a dependence at more than $5 \sigma$ away from the null hypothesis. This anomaly can be interpreted as oscillation of neutrons to mirror neutrons with a timescale of few seconds, in the presence of a mirror magnetic field order 0.1 G at the Earth. This result, if confirmed by future experiments, will have deepest consequences for fundamental particle physics, astrophysics and cosmology.


Parallel matter can be a viable candidate for dark matter [7-9]. Certain $B-L$ and CP violating processes between ordinary and mirror particles can generate the baryon asymmetries in both sectors [10-12] which scenario can naturally explain the relation $\Omega_{D} / \Omega_{B} \simeq 5$ between the dark and visible matter fractions in the Universe [13-16]. Such interactions can be mediated by heavy messengers coupled to both sectors, as right-handed neutrinos [10-12] or extra gauge bosons/gauginos [17]. ${ }^{1}$ In the context of extra dimensions, ordinary and mirror sectors can be modeled as two parallel three-dimensional branes and particle processes between them mediated by the bulk modes or "baby branes" can be envisaged [24].

On the other hand, these interactions can induce mixing phenomena between ordinary and mirror particles. In fact, any neutral particle, elementary or composite, may oscillate

## Serebrov III - Drifts of detector and monitor counts

 and Where to Find Them)Zurab Berezhiani

Exp. sequence: $\left\{B_{-}, B_{+}, B_{+}, B_{-}, B_{+}, B_{-}, B_{-}, B_{+}\right\}, B=0.2 \mathrm{G}$


## Serebrov III - magnetic field vertical

## (Fantast

 Beasts and Where to Find Them)Exp. sequence: $\left\{B_{-}, B_{+}, B_{+}, B_{-}, B_{+}, B_{-}, B_{-}, B_{+}\right\}, B=0.2 \mathrm{G}$


Analysis pointed out the presence of a signal:

$$
A(B)=(7.0 \pm 1.3) \times 10^{-4} \quad \chi_{/ d o f}^{2}=0.9 \longrightarrow 5.2 \sigma
$$

interpretable by $n \rightarrow n^{\prime}$ with $\tau_{n n^{\prime}} \sim 2-10 s^{\prime}$ and $B^{\prime} \sim 0.1 G$ Z.B. and Nesti, 2012

## Earth mirror magnetic field via the electron drag mechanism



Earth can accumulate some, even tiny amount of mirror matter due to Rutherford-like scattering of mirror matter due to photon-mirror photon kinetic mixing.
Rotation of the Earth drags mirror electrons but not mirror protons (ions) since the latter are much heavier.
Circular electric currents emerge which can generate magnetic field. Modifying mirror Maxwell equations by the source (drag) term, one gets $B^{\prime} \sim \epsilon^{2} \times 10^{15} \mathrm{G}$ before dynamo, and even larger after dynamo.

Such mechanism can also induce cosmological magnetic fields Z.B., Dolgov, Tkachev, 2013

Parallel/Mirror Dark World
(Fantast Beasts and Where to Find Them)

Zurab Berezhiani

## Summary

Introduction:
Mirror Matter
Chapter I:
Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars

Serebrov II - magnetic field Horizontal
$\left\{b_{-}, B_{-}, B_{+}, b_{+}, b_{+}, B_{+}, B_{-}, b_{-}\right\}, B=0.2 \mathrm{G}, b<10^{-3} \mathrm{G}$




## Serebrov 2007 - magnetic field Horizontal

## (Fantast

 Beasts and Where to Find Them)Zurab Berezhiani

Summary
Introduction:
Mirror Matter

Chapter I:
Neutrino - mirror
neutrino mixings
Chapter II
neutron - mirror neutron mixing





## My own neasurements 2014 at ILL - with Biondi,

 Geltenbort et al.
## (Fantast Beasts and Where to Find Them)

Zurab Berezhiani

## Summary

Introduction:

## Mirror Matter

Chapter I:
Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing

Chapter III:
$n-n^{\prime}$ and
Neutron Stars


