# Light Dark Sectors <u>&</u> Neutrino Mass Generation

Enrico Bertuzzo Universidade de São Paulo (Brazil)

> NEPLES 2019 KIAS - Seoul

### Roadmap



#### MiniBooNE

Excess has a spectrum in energy but in angle as well



#### Signal is fairly isotropic



### MiniBooNE

Crucial for us: signal of two collimated electrons = signal of one electron



we need N to be heavy to have small boost ( $m_N \approx 100$  MeV) and  $Z_P$  to be much lighter to be boosted ( $m_{ZP} \approx 60$  MeV)

### MiniBooNE



Message: we want a dark sector which can accommodate

- (i) a relatively heavy RH neutrino
- (ii) the RH neutrino must be able to decay into a (light) dark gauge boson

(iii) the dark gauge boson should be able to decay into ete-

# How do we construct a model with such a dark sector?

### Irreducible ingredients

- (i) there must be a new gauge sector
- (ii) we want the new gauge boson to mix with EM to decay into ete-
  - $\Longrightarrow$  we'll add a U(1)<sub>p</sub>
- (iii) the RH neutrino must be charged under the new U(1) to allow for  $Z_{D\mu}~N^{\dagger}\sigma^{\mu}N$
- (iv) we will try to avoid to use the Higgs boson to write a term L H N because N has a dark charge (we want to minimize the Z- $Z_P$  mixing to avoid as much as possible problems with EWPM)

### Point (iv) remembers

#### Neutrinophilic models

Gabriel, Nandi hep-ph/0610253 Davidson, Logan 0906.3335

$$\mathcal{L} = \mathcal{Y}_{ij} L_i N_j + rac{1}{2} M_i N_j + h.c.$$
 forbidden by a new global U(1) or  $\mathbf{Z}_2$ 

"Neutrinophilic scalar doublet", vev O(eV) postulated

- ullet Pros: (i) hierarchy between vev's radiatively stable, (ii) Y  $\sim$  1, (iii) NP may be light
- Cons: experimentally very constrained (basically excluded)

see 1507.07550 & 1510.04284 with R. Funchal, Y. Perez & O. Sumensari

## Question: can we `save' neutrinophilic models introducing the gauge symmetry we want?



see 1706.10000 with R. Funchal, P. Machado and Z. Tabrizi

1. Dirac mass term: allowing  $L\phi N$  forbidding LHN

2. Avoiding anomalies: add new fermions N'

|        | $SU(2)_L$ | $U(1)_{Y}$ | $U(1)_{\mathcal{D}}$ | $U(1)_{\ell}$ | U(1)' |
|--------|-----------|------------|----------------------|---------------|-------|
| L      | 2         | -1/2       | 0                    | 1             | -1    |
| $\phi$ | 2         | 1/2        | +1                   | 0             | 1     |
| N      | 1         | 0          | -1                   | -1            | 0     |
| N'     | 1         | 0          | +1                   | +1            | 0     |

$$\mathcal{L} = \mathcal{Y}L\phi N + \mathcal{M}NN'$$

3. The problem of the massless fermions: when Ф takes vet

$$\mathcal{L} = (\mathcal{Y}\langle\phi\rangle\nu + \mathcal{M}N')N$$

this combination gets mass, the orthogonal stays massless



|                     | $SU(2)_L$ | $U(1)_Y$ | $ U(1)_{\mathcal{D}} $ | $U(1)_{\ell}$ | U(1)' |
|---------------------|-----------|----------|------------------------|---------------|-------|
| $\overline{L}$      | 2         | -1/2     | 0                      | 1             | -1    |
| $\boldsymbol{\phi}$ | 2         | 1/2      | +1                     | 0             | 1     |
| N                   | 1         | 0        | -1                     | -1            | 0     |
| N'                  | 1         | 0        | +1                     | +1            | 0     |
| $S_2$               | 1         | 0        | +2                     | +2            | 0     |

$$\mathcal{L} = \mathcal{Y}L\phi N + \mathcal{M}NN' + yS_2NN + y'S_2^*N'N'$$

basically a dynamical INVERSE SEESAW =>

4. The problem of the massless NGB: when  $\langle H \rangle \neq 0$  the global U(1)' is still a symmetry of the scalar potential, hence when  $\langle \Phi \rangle \neq 0$  the global global U(1)' is spontaneously broken, leaving a massless NGB in the spectrum

First possibility: explicit breaking

$$\mathcal{L}_{break} = \frac{(\phi^{\dagger} H)^2 S_2}{\Lambda}$$

We find that the model is phenomenologically viable, although not trivial to generate this term  $\Rightarrow$ 

see 1706.10000 with R. Funchal, P. Machado & Z. Tabrizi

4. The problem of the massless NGB: when  $\langle H \rangle \neq 0$  and  $\langle S_2 \rangle \neq 0$  the global U(1)' is still a symmetry of the scalar potential  $\Longrightarrow$  when  $\langle \Phi \rangle \neq 0$  the global global U(1)' is spontaneously broken, leaving a massless NGB in the spectrum

#### Second possibility: add a new scalar S1

|                     | $SU(2)_L$ | $U(1)_Y$ | $U(1)_{\mathcal{D}}$ | $U(1)_{\ell}$ | U(1)' |
|---------------------|-----------|----------|----------------------|---------------|-------|
| $\overline{L}$      | 2         | -1/2     | 0                    | 1             | -1    |
| $\boldsymbol{\phi}$ | 2         | 1/2      | +1                   | 0             | 1     |
| N                   | 1         | 0        | -1                   | -1            | 0     |
| N'                  | 1         | 0        | +1                   | +1            | 0     |
| $S_2$               | 1         | 0        | +2                   | +2            | 0     |
| $S_1$               | 1         | 0        | +1                   | 0             | ?     |

see 1808.02500 with S. Jana, R. Funchal & P. Machado

4. The problem of the massless NGB: when  $\langle H \rangle \neq 0$  and  $\langle S_2 \rangle \neq 0$  the global U(1)' is still a symmetry of the scalar potential  $\Longrightarrow$  when  $\langle \Phi \rangle \neq 0$  the global global U(1)' is spontaneously broken, leaving a massless NGB in the spectrum

Second possibility: add a new scalar S1

$$V = \mu S_1(\phi^{\dagger} H) + \mu' S_2^* S_1^2 + \alpha (H^{\dagger} \phi) S_1 S_2^*$$

no consistent U(1)' charge for S<sub>1</sub>
hence
U(1)' explicitly broken

 $\mu$ ,  $\mu'$  &  $\alpha$  are U(1)' spurions  $\rightarrow$  technically natural to have them small  $\Rightarrow$ 

see also 1903.00006 for a similar model

### Scales in the model

Back to 
$$\mathcal{L} = \mathcal{Y} L \phi N + \mathcal{M} N N' + y S_2 N N + y' S_2^* N' N'$$

To guarantee small nu masses we need small  $\langle \Phi \rangle$  &  $\langle S_2 \rangle$ 

ldea: generate small dynamical vev's via tadpoles

$$V = \mu S_1(\phi^{\dagger} H) + \mu' S_2^* S_1^2 + \alpha (H^{\dagger} \phi) S_1 S_2^*$$



when  $\mu$ ,  $\mu$  &  $\alpha$  vanish, no tadpole are generated, hence small vev's are technically natural

#### Scalar sector

#### More in detail:

$$\begin{split} V &= \lambda_{H} \left( |H|^{2} - \frac{v^{2}}{2} \right)^{2} + \lambda_{S_{2}} \left( |S_{1}|^{2} - \frac{\omega_{1}^{2}}{2} \right)^{2} + \lambda_{HS_{1}} \left( |H|^{2} - \frac{v^{2}}{2} \right) \left( |S_{1}|^{2} - \frac{\omega_{1}^{2}}{2} \right) \\ &+ m_{\phi}^{2} |\phi|^{2} + \lambda_{\phi} |\phi|^{4} + m_{S_{2}}^{2} |S_{2}|^{2} + \lambda_{S_{2}} |S_{2}|^{4} \\ &- \left[ \frac{\mu}{2} S_{1} \left( \phi^{\dagger} H \right) + \frac{\mu'}{2} S_{1}^{2} S_{2}^{*} + \frac{\alpha}{2} \left( H^{\dagger} \phi \right) S_{1} S_{2}^{*} + \text{h.c.} \right] \\ &+ \lambda'_{H\phi} \left| \phi^{\dagger} H \right|^{2} + \sum_{\varphi < \varphi'} \lambda_{\varphi \varphi'} |\varphi|^{2} |\varphi'|^{2} , \end{split}$$

Induced vev's

$$v_{\phi} \simeq rac{1}{8\sqrt{2}} \left( rac{lpha \mu' \, v \omega_{1}^{3}}{M_{S_{\mathcal{D}}'}^{2} M_{H_{\mathcal{D}}}^{2}} + 4 rac{\mu \, \omega_{1} v}{M_{H_{\mathcal{D}}}^{2}} 
ight)$$
 $\omega_{2} \simeq rac{1}{8\sqrt{2}} \left( rac{lpha \mu \, v^{2} \omega_{1}^{2}}{M_{S_{\mathcal{D}}'}^{2} M_{H_{\mathcal{D}}}^{2}} + 4 rac{\mu' \, \omega_{1}^{2}}{M_{S_{\mathcal{D}}'}^{2}} 
ight)$ 

We need one state to be aligned to the SM Higgs  $\Rightarrow$  in general we need

<\$1> « <H> ("low scale realization")

 $\langle S_1 \rangle \gg \langle H \rangle$  ("high scale realization")

### Neutrino sector -1-

Back to 
$$\mathcal{L} = \mathcal{Y} L \phi N + \mathcal{M} N N' + y S_2 N N + y' S_2^* N' N'$$



$$\underline{\text{effectively a dim = 9 operator}} \quad \mathcal{L}_{mass} \sim \frac{\mathcal{Y}^2 y'}{\mathcal{M}^2} \frac{\mu^2}{M_{H_{\mathcal{D}}}^2} \frac{\mu'}{M_{S_{\mathcal{D}}'}^2} (LH)^2 |S_1|^4$$

### Neutrino sector -2-

$$\mathcal{M}_{
u} = egin{pmatrix} 0 & \mathcal{Y}\langle\phi
angle & 0 \ \mathcal{Y}\langle\phi
angle & y\langle S_2
angle & \mathcal{M} \ 0 & \mathcal{M} & y'\langle S_2
angle \end{pmatrix}$$

Light-heavy mixing  $\sim Y < \Phi > /M$ 

Since  $\langle \Phi \rangle$  small, sterile N's can be made relatively light without introducing too much mixing

### Gauge sector

$$\mathcal{L} = \frac{m_{Z_{\mathcal{D}}}^2}{2} Z_{\mathcal{D}}^2 + g_{\mathcal{D}} Z_{\mathcal{D}} \cdot J_{\mathcal{D}} + e\epsilon Z_{\mathcal{D}} \cdot J_{EM} + \frac{g}{\cos(\theta_W)} \epsilon' Z_{\mathcal{D}} \cdot J_Z$$

where 
$$m_{Z_{\mathcal{D}}} \simeq g_{\mathcal{D}} \langle S_1 \rangle$$

$$\epsilon' \simeq \frac{2g_{\mathcal{D}}}{g/\cos(\theta_W)} \left(\frac{\langle \phi \rangle}{\langle H \rangle}\right)^2$$

$$\epsilon \gtrsim \frac{eg_{\mathcal{D}}}{480\pi^2} \frac{m_{Z_{\mathcal{D}}}^2}{m_{H_{\mathcal{D}}^\pm}^2} \quad \text{(irreducible loop contribution)}$$

Usual bounds apply ⇒

## A possible low scale spectrum

we take  $\langle S_1 \rangle \langle \langle \langle H \rangle$  to have a SM-like Higgs



1 GeV

102 MeV

10 MeV

| N                 |                   |                   |
|-------------------|-------------------|-------------------|
| S <sub>1,Re</sub> | S <sub>2,Re</sub> | S <sub>2,Im</sub> |
| Zn                |                   |                   |

#### Vacuum Expectation Values

| v (GeV) | $\omega_1$ (MeV) | $v_{\phi}$ (MeV) | $ω_2$ (MeV) |
|---------|------------------|------------------|-------------|
| 246     | 136              | 0.176            | 0.65        |

#### Coupling Constants

| $\lambda_H$          | $\lambda_{H\phi} = \lambda'_{H\phi}$ | $\lambda_{HS_1}$ | $\lambda_{HS_2}$   |
|----------------------|--------------------------------------|------------------|--------------------|
| 0.129                | $10^{-3}$                            | 10-3             | $-10^{-3}$         |
| $\lambda_{\phi S_1}$ | $\lambda_{\phi S_2}$                 | $\lambda_{S_1}$  | $\lambda_{S_1S_2}$ |
| 10-2                 | 10-2                                 | 2                | 0.01               |
| μ (GeV)              | $\mu^{\iota}$ (GeV)                  | α                | $g_{\mathcal{D}}$  |
| 0.15                 | 0.01                                 | $10^{-3}$        | 0.22               |

#### Barc Masses

| $m_{\phi}$ (GeV) | $m_2$ (GeV) |
|------------------|-------------|
| 100              | 5.51        |

#### Masses of the Physical Fields

| $m_{h_{\mathrm{SM}}}$ (GeV) | $m_{H_{\mathcal{D}}}$ (GeV) | $m_{S_{\mathcal{D}}}$ (MeV) | $m_{S_{\mathcal{D}}'}$ (MeV) | $m_{H_{\mathcal{D}}^{\pm}}$ (GeV) | $m_{A_{\mathcal{D}}}$ (GeV) | $m_{a_{\mathcal{D}}}$ (MeV) | $m_{Z_{\mathcal{D}}}$ (MeV) | $m_{N_{\mathcal{D}}}$ (MeV) |
|-----------------------------|-----------------------------|-----------------------------|------------------------------|-----------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 125                         | 100                         | 272                         | 320                          | 100                               | 100                         | 272                         | 30                          | 150                         |

#### Mixing between the Fields

| $	heta_{II\phi}$     | $\theta_{IIS_1}$     | $	heta_{HS_2}$ | $	heta_{\phi S_1}$   | $	heta_{\phi S_2}$   | $	heta_{S_1S_2}$     | $\epsilon\epsilon$ | €′                    | $ U_{\alpha N} ^2$ |
|----------------------|----------------------|----------------|----------------------|----------------------|----------------------|--------------------|-----------------------|--------------------|
| $1.3 \times 10^{-6}$ | $2.1 \times 10^{-6}$ | $10^{-8}$      | $1.2 \times 10^{-3}$ | $8.3 \times 10^{-7}$ | $3.4 \times 10^{-2}$ | $2 \times 10^{-4}$ | $3.6 \times 10^{-14}$ | $O(10^{-6})$       |

## A possible low energy spectrum

we take  $\langle S_1 
angle \langle \langle H 
angle$  to have a SM-like Higgs

The dark sector interacts with the SM via 3 renormalizable portals (gauge, neutrino & scalar) but with tiny mixings  $\frac{\text{Vacuum Expectation Values}}{\text{MeV}) \; \omega_2 \; (N_{176} \; 0.6) \; \omega_2 \; (N_{176} \; 0.6) \; \omega_3 \; (N_{176} \; 0.6) \; \omega_4 \; (N_{176} \; 0.6) \; \omega_4 \; (N_{176} \; 0.6) \; \omega_5 \; (N_{176} \; 0.6) \; \omega_6 \; (N_{176}$ 

1

mostly secluded from the visible sector

| MeV)    | $\omega_2$ (MeV)   |
|---------|--------------------|
| 176     | 0.65               |
| stants  | 4                  |
| $is_1$  | $\lambda_{HS_2}$   |
| -3      | $-10^{-3}$         |
| $S_1$   | $\lambda_{S_1S_2}$ |
| 2       | 0.01               |
| œ       | g <sub>D</sub>     |
| 3       | 0.22               |
| es      |                    |
| $m_2$ ( | GeV)               |
| 5.      | 51                 |

#### Masses of the Physical Fields

| Ī | $m_{h_{\mathrm{SM}}}$ (GeV) | $m_{H_{\mathcal{D}}}$ (GeV) | $m_{S_{\mathcal{D}}}$ (MeV) | $m_{S_{\mathcal{D}}'}$ (MeV) | $m_{H_{\mathcal{D}}^{\pm}}$ (GeV) | $m_{A_{\mathcal{D}}}$ (GeV) | $m_{n_{\mathcal{D}}}$ (MeV) | $m_{Z_{\mathcal{D}}}$ (MeV) | $m_{N_{\mathcal{D}}}$ (MeV) |
|---|-----------------------------|-----------------------------|-----------------------------|------------------------------|-----------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|   | 125                         | 100                         | 272                         | 320                          | 100                               | 100                         | 272                         | 30                          | 150                         |

Mining between the Fields

| Ī | $	heta_{II\phi}$     | $\theta_{HS_1}$      | $\theta_{HS_2}$ | $\theta_{\phi S_1}$  | $\theta_{\phi S_2}$  | $\theta_{S_1S_2}$    | $\epsilon\epsilon$ | €′                    | $ U_{lpha N} ^2$       |
|---|----------------------|----------------------|-----------------|----------------------|----------------------|----------------------|--------------------|-----------------------|------------------------|
|   | $1.3 \times 10^{-6}$ | $2.1 \times 10^{-6}$ | $10^{-8}$       | $1.2 \times 10^{-3}$ | $8.3 \times 10^{-7}$ | $3.4 \times 10^{-2}$ | $2 \times 10^{-4}$ | $3.6 \times 10^{-14}$ | $\mathcal{O}(10^{-6})$ |

0<sup>2</sup> GeV

GeV

102 MeV

10 MeV

## Pheno consequences (currently under study)

- Low scale realization: many possible signatures in low energy experiments (APV, rare mesons decays, running weak mixing angle, NSI, CNSN...)
- High energy realization: interesting at colliders, although maybe too secluded (but for instance: new rare Higgs decays  $h_{SM} \rightarrow Z Z_P$ )
- <u>Park Matter</u>: always possible to introduce a candidate, it seems hard to have a <u>PM</u> candidate that actually does something to the model

### Takeaway

- Starting from a model motivated by MiniBooNE, we obtain a variant of neutrinophilic models with a gauged U(1)
- This model automatically gives a dynamical inverse seesaw, generating neutrino masses at the dim=9 level
- The associated dark sector is
  - i. light/heavy depending on  $(S_1)$
  - ii. in general very secluded from the SM
- Interesting phenomenology possible for both the low/high energy realizations, currently under study

### Additional material

### Inverse seesaw: a recap

Mohapatra '86 Mohapatra, Valle '86

$$\mathcal{L} = \mathcal{Y}(LH)\psi + m_{\psi}\psi\psi^{c} + \frac{\mu}{2}\psi^{c}\psi^{c}$$



### Experimental constraints on the model with explicit breaking



see 1706.10000 with R. Funchal, P. Machado & Z. Tabrizi

## Spurion analysis of global U(1)' breaking

We know that the parameters  $\mu$ ,  $\mu'$  &  $\alpha$  break explicitly the global U(1)' symmetry, so they can be treated as spurious with charges satisfying the following equations:

$$V = \mu S_1(\phi^{\dagger} H) + \mu' S_2^* S_1^2 + \alpha (H^{\dagger} \phi) S_1 S_2^*$$

$$q_{\mu} + q_{S_1} - 1 = 0$$
,  $q_{\mu'} + 2q_{S_1} = 0$ ,  $q_{\alpha} + 1 + q_{S_1} = 0$ 

Radiatively we generate

$$\Delta\mu \propto \frac{\mu'\alpha^*}{16\pi^2}$$

$$\Delta\mu' \propto \frac{\mu\alpha}{16\pi^2}$$

$$\Delta\alpha \propto \frac{\mu'\mu^*}{16\pi^2}$$

#### Vark Z bounds



#### Vark neutrino bounds



## How to generate neutrino masses: common lore

If RH neutrinos exist, we can try to mimic what happens for charged fermions:

$$\mathcal{L} = \mathcal{Y}_{ij}L_iHN_j + \frac{1}{2}M_{ij}N_iN_j + h.c.$$

- Pros: "same" mechanism as other SM fermions
- Cons: (i) need Y  $\sim$  10<sup>-11</sup>, (ii) since M term is unavoidable, at most we get pseudo-Dirac v's (i.e. v masses not entirely coming from <H>)

## How to generate neutrino masses: common lore

If M is heavier than the EW scale, then we get tiny <u>Majorana</u> neutrino masses

to have 
$$m_{\rm V} \lesssim 1$$
 eV  $\mathcal{L}_5 = \frac{c}{\Lambda} (LH)^2 \quad \Rightarrow \quad \frac{\Lambda}{c} \gtrsim 10^{13} {
m GeV}$ 

Other possible realizations:



- Pros: (i) simple, (ii) matter-antimatter asymmetry can be generated
- Cons: scales are too heavy to be probed (unless tiny c)