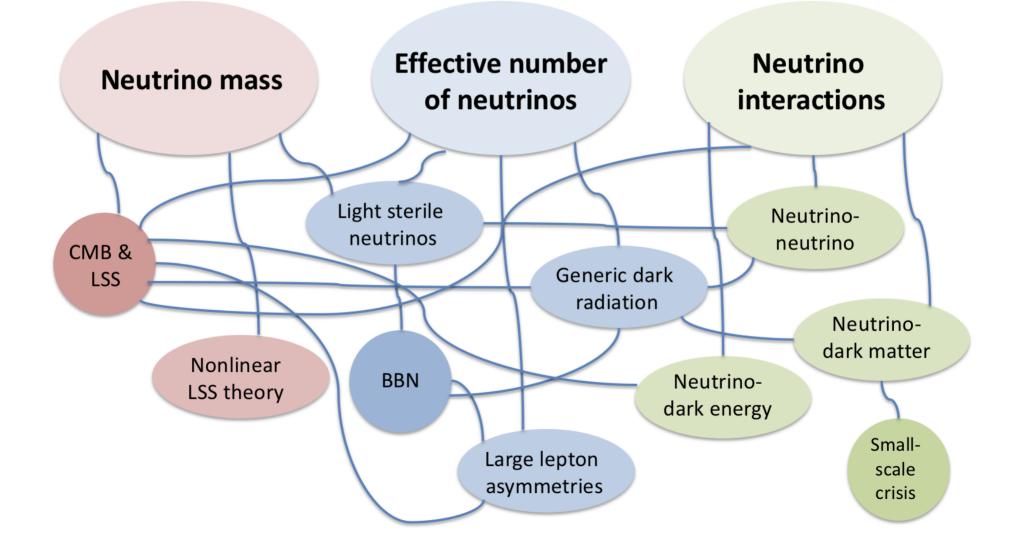

Physics and properties of relic neutrinos

Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia

NEPLES-2019, KIAS, Seoul, September 23 – 27, 2019


The concordance flat ACDM model...

The simplest model consistent with present observations.

Plus flat spatial geometry+initial conditions from single-field inflation

The neutrino sector beyond $\Lambda CDM...$

This talk...

- Generic standard model predictions
- CMB and other large-scale structure constraints on neutrino properties
 - Masses
 - Effective number of neutrinos
 - Interactions
- Relic neutrino distribution on galaxy/cluster scales

1. Generic standard model predictions...

Generic predictions of the standard hot big bang...

- Neutrino decoupling at $T \sim O(1)$ MeV. \blacksquare Fixed by weak interactions
- After e^+e^- annihilation ($T \sim 0.5$ MeV):
 - Temperature:

- Assuming $T_{dec} >> m_e$ $T_v = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$ $\rho_v = \frac{7}{8} \frac{\pi^2}{15} T_v^4 = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}$
- Energy density per flavour:

Generic predictions of the standard hot big bang...

- Neutrino decoupling at $T \sim O(1)$ MeV. \blacksquare Fixed by weak interactions
- After e^+e^- annihilation ($T \sim 0.5$ MeV):
 - Temperature:
 - Energy density per flavour:

$$T_{v} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$$

$$\rho_{v} = \frac{7}{8} \frac{\pi^{2}}{15} T_{v}^{4} = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma} \qquad \frac{3\rho_{v}}{\rho_{\gamma}} \sim 0.68$$

 $\Lambda_{aa} = T$

• If massive, then at $T << m_v$: $\rho_v = m_v n_v$

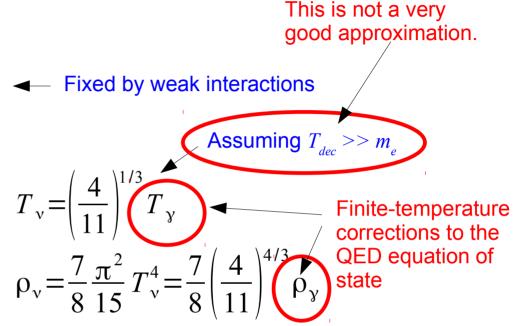
$$\Omega_{\rm v,0} h^2 = \sum \frac{m_{\rm v}}{93\,\rm eV}$$

- Energy density in neutrino dark matter

From neutrino oscillations
$$\longrightarrow 0.1 \% < \Omega_{\nu,0} < 7 \%$$
 From KATRIN
 $m_e \equiv \left(\sum_i |U_{ei}|^2 m_i^2\right)^{1/2} < 1.1 \text{ eV}$

Generic predictions of the standard hot big bang...

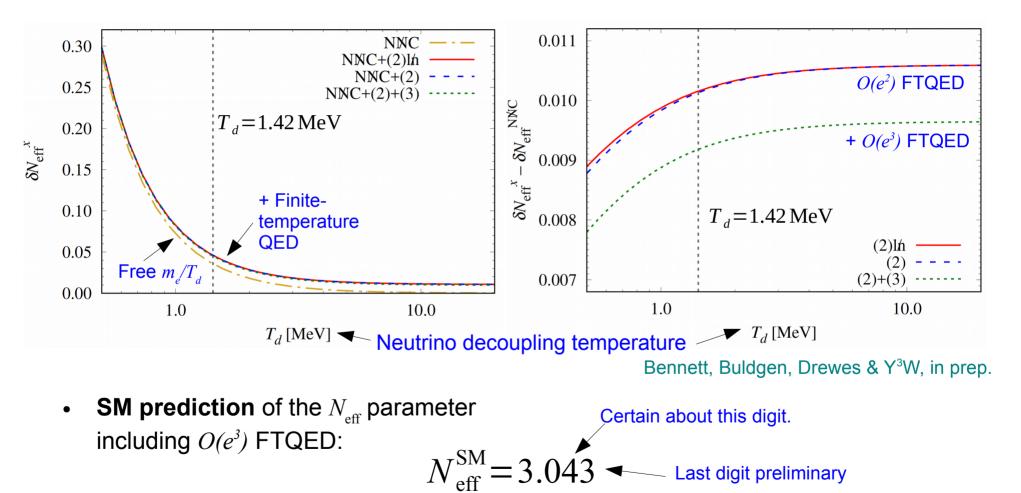
- Neutrino decoupling at $T \sim O(1)$ MeV. \blacksquare Fixed by weak interactions •
- After e^+e^- annihilation ($T \sim 0.5$ MeV): •
 - **Temperature**:
 - Energy density per flavour: (High-z; say, $z > 10^6$)


(Low-z; say, $z < 10^{6}$)

If massive, then at $T \ll m_{y}$: • $\rho_{y} = \eta$

After
$$e^+e^-$$
 annihilation $(T \sim 0.5 \text{ MeV})$:
- Temperature:
 $T_v = \left(\frac{4}{11}\right)^{1/3} T_v$
- Energy density per flavour:
 $(\text{High-z; say, } z > 10^\circ)$
 $p_v = \frac{7}{8} \frac{\pi^2}{15} T_v^4 = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_v$
 $p_v = \frac{7}{8} \frac{\pi^2}{15} T_v^4 = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_v$
 $p_v = \frac{3\rho_v}{\rho_v} \sim 0.68$
 $p_v = \frac{7}{8} \frac{\pi^2}{15} T_v^4 = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_v$
 $p_v = \frac{3\rho_v}{\rho_v} \sim 0.68$
If massive, then at $T << m_v$:
 $p_v = m_v n_v$
 $p_v = \frac{1}{93} \frac{m_v}{93} \frac{m_v}{1/3}$
From neutrino oscillations
 $m_n \sum m_v = 0.06 \text{ eV}$
 $p_v = \frac{1}{90} \frac{m_v}{1/3} \frac{m_v}{1/3}$
 $p_v = \frac{1}{10} \frac{m_v}{1/3} \frac{m_v}{1/3}$

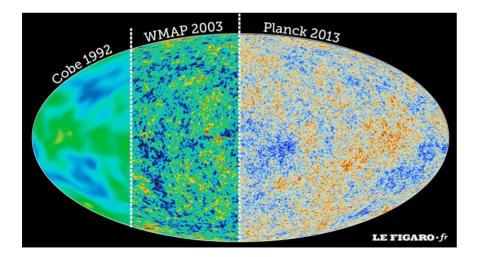
Some small tweaks...


- Neutrino decoupling at $T \sim O(1)$ MeV. \blacksquare Fixed by weak interactions
- After e^+e^- annihilation ($T \sim 0.5$ MeV):
 - Temperature:
 - Energy density per flavour: (High-z; say, z > 10⁶)

• Lump all corrections into the effective number of neutrino N_{eff} parameter:

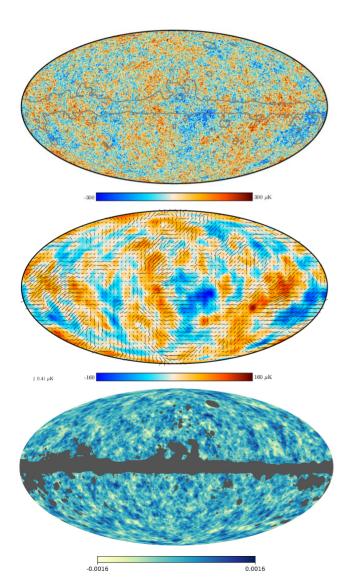
$$\sum \rho_{\nu} = N_{\text{eff}} \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \rho_{\gamma} = (3 + \delta N_{\text{eff}}) \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \rho_{\gamma}$$

Effective number of neutrinos: SM corrections...


Bennett, de Salas, Gariazzo, Pastor & Y³W, in prep.

2. CMB and large-scale structure constraints...

Observable 1: CMB anisotropies...


ESA Planck mission: State-of-the-art measurements of the temperature and polarisation fluctuations in the cosmic microwave background.

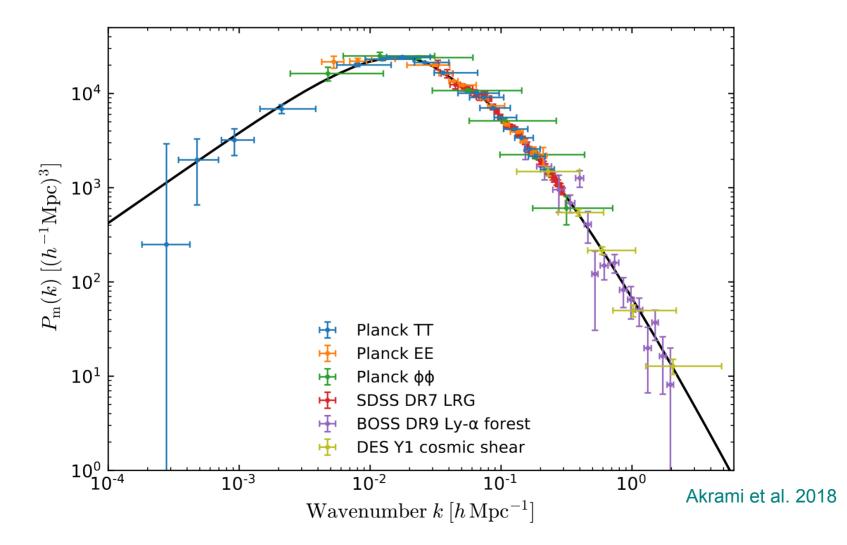
- Final data release results 2018
- Main driver behind cosmological constraints on neutrino physics

Three CMB observables...

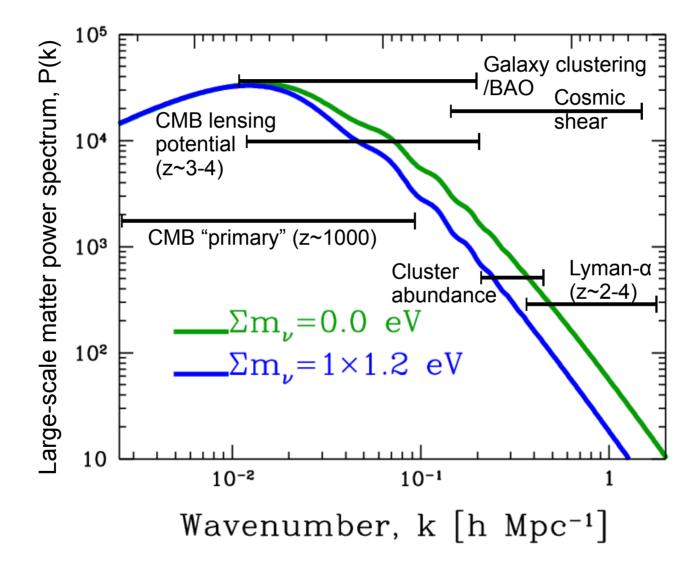
Temperature:

- Sensitive to m_{ν} , N_{eff} , ν interactions
- Cosmic-variance-limited to l ~ 2000 since 2013 (i.e., nothing more to be done here)

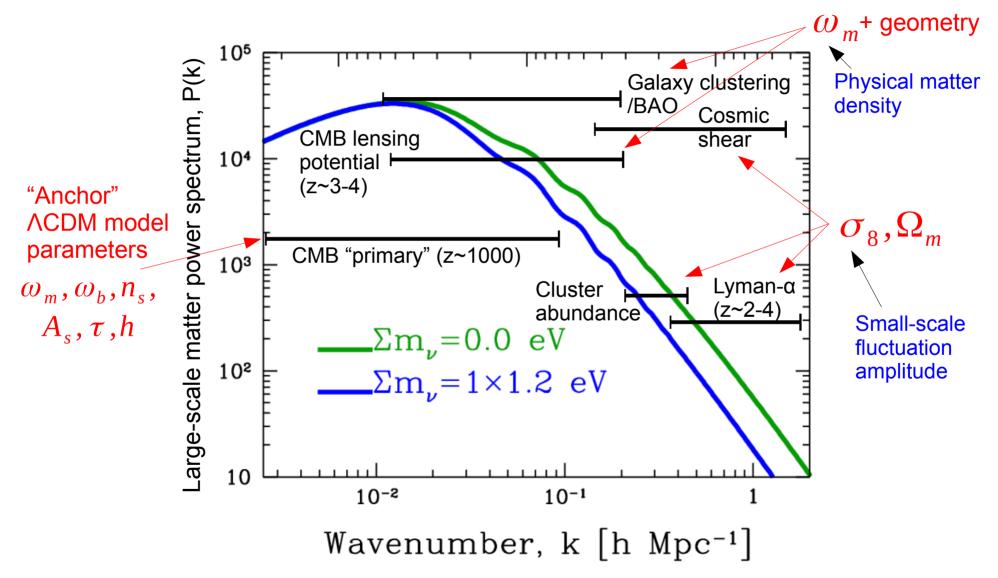
Polarisation:


- No independent info on m_v , N_{eff} (interactions?)
- Low multipoles lifts A_s - τ degeneracy, which helps to tighten other parameter constraints.

Lensing potential:


- Secondary observable reconstructed from temperature and/or polarisation (future) maps.
- Independent signatures of neutrino physics; particularly good for m_v

Observable 2: large-scale matter power spectrum...


Large-scale matter power spectrum measurements circa 2018

Observable 2: large-scale matter power spectrum...

Observable 2: large-scale matter power spectrum...

Constraints on the neutrino mass sum...

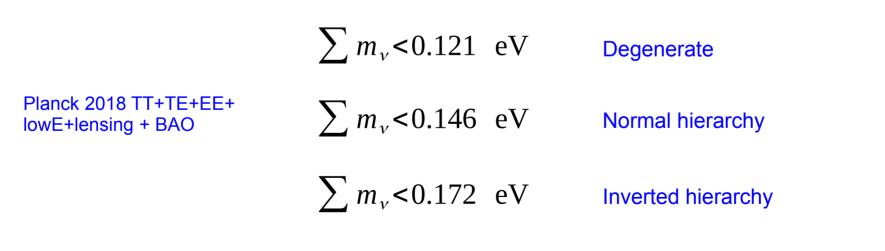
Λ CDM+neutrino mass 7-parameter fit; 95% C.L. on $\sum m_v$ in [eV].

Low-*l* polarisation only

Two different high-*l* likelihood functions

		+Lensing	+BAO (non-CMB)	+Lensing+BAO	
Planck2018 TT+lowE	0.54	0.44	0.16	0.13	
2015 numbers	0.72	0.68	0.21	n/a	
Plus high-{ polarisation					
Planck2018 TT +lowE+TE+EE	0.26	0.24	0.13	0.12	
Planck2018 TT +lowE+TE+EE [CamSpec]	0.38	0.27	n/a	0.13	
2015 numbers	0.49	0.59	0.17	n/a	

Planck2015 TT+lowP+Lya $\sum m_{\nu} < 0.13$ eV


Palanque-Delabrouille et al. 2015

Aghanim et al. [Planck] 2018 Ade et al. [Planck] 2015

Caveat 1 of 2 : which mass hierarchy...

Mass bounds reported in official Planck papers have all been derived assuming 3 neutrino families with degenerate masses.

- Using different mass orderings in the fit actually does change the bounds by up to ~40%.
- ACDM+neutrino mass 7-parameter fit; 95% C.L. on $\sum m_y$ in [eV]:

Roy Choudhury & Hannestad 2019

Caveat 2 of 2: model dependence...

All bounds so far have been derived from a Λ CDM+neutrino mass 7 parameter fits.

• Can make the fit model more complicated in order to "relax" the bounds.

	Model	Degenerate	Normal	Inverted	
	Baseline $\Lambda CDM + \Sigma m_{y}$	0.121	0.146	0.172	
Primordial tensors Dynamical dark energy	+ <i>r</i>	0.115	0.142	0.167	
	+ w	0.186	0.215	0.230	
	$+ W_0 W_a$	0.249	0.256	0.276	
	$+ w_0 w_a, w(z) > -1$	0.096	0.129	0.157	Roy Choudhury
Spatial curvature	$+ \Omega_k$	0.150	0.173	0.198	& Hannestad 2019

- However, this sort of game doesn't gain you that much. (Some relaxation, but it's not like you can squeeze in a 1 eV neutrino.)
- It doesn't always work in the desired direction.

Constraints on N_{eff} ...

Aghanim et al. [Planck] 2018 Ade et al. [Planck] 2015

Planck-inferred $N_{\rm eff}$ compatible with 3.046 at better than 2σ .

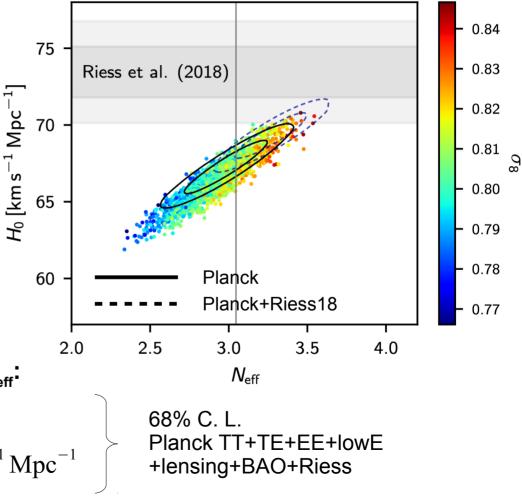
ΛCDM+Neff 7-parameter fit	Planck 2018 (95%)	Planck2015 (95%)
TT+lowE	3.00 ^{+0.57} -0.53	3.13±0.64
+lensing+BAO	3.11 ^{+0.44} -0.43	n/a
TT+lowE+TE+EE	2.92 ^{+0.36} -0.37	2.99±0.40
+lensing+BAO	2.99 ^{+0.34} -0.33	n/a

ACDM+Neff+neutrino mass 8-parameter fit

 $N_{\rm eff} = 2.96_{-0.33}^{+0.34}$ $\sum m_{\nu} < 0.12 \text{ eV}$ 95% C. L. Planck TT+TE+EE+lowE +lensing+BAO

 N_{eff} and the H_0 tension...

3.6 σ discrepancy between the Planck-inferred H₀ and local measurements:


- TT+TE+EE+lowE+lensing $H_0 = 67.36 \pm 0.54 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- Local measurement:

 $H_0 = 73.52 \pm 1.62 \,\mathrm{km \, s}^{-1} \,\mathrm{Mpc}^{-1}$

Riess et al. 2018

Joint Planck+Riess 2018 fit varying N_{eff}:

$$N_{\rm eff} = 3.27 \pm 0.15$$

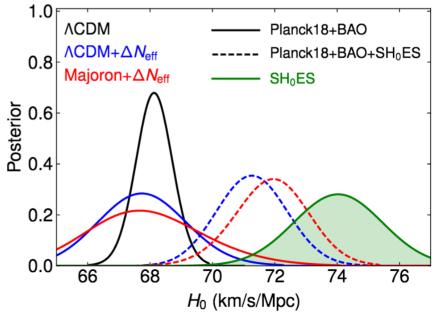
 $H_0 = 69.32 \pm 0.97 \,\rm km \, s^{-1} \, Mpc^{-1}$

Exotica 1: neutrino self-interaction...

Originally investigated for academic interest in two limits:

• 4-fermion contact interaction

Massless mediator


Cyr-Racine & Sigurdson 2014; Lancaster et al. 2017 Oldengott, Tram, Rampf & Y³W 2017

Oldengott, Rampf & Y³W 2015 Forasteri, Lattanzi & Natoli 2015, 2019

More recently, proposed as a solution to the H_{θ} tension, with fine prints:

- Only works in conjunction with a non-standard $N_{\rm eff}$
- Need at least $G_{\text{eff}} = 10^{-4} \text{ MeV}^{-2}$
- Does not fare well with high-*l* polarisation.

Kreisch, Cyr-Racine & Dore 2019 Escudero & Witte 2019

Exotica 2: neutrino-dark matter elastic scattering...

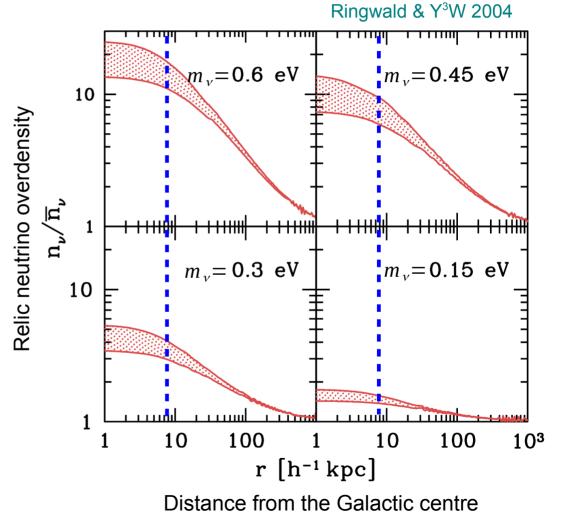
Originally proposed as an alternative to Warm Dark Matter to solve the small-scale crisis.

 Collisional damping has similar gross features as free-streaming on small scales.
 Boehm, Riazuelo, Hansen & Schaeffer 2002 Boehm, Fayet & Schaeffer 2001

Recently revived as a solution to the H_a tension. Di Valentino, Boehm, Hivon & Bouchet 2018

- As in the case of neutrino self-interaction, still need a non-standard $N_{\rm eff}$ to make the scenario work.
- Does not fare well with high-*l* polarisation data.

3. Relic neutrino distribution on galaxy/cluster scales...

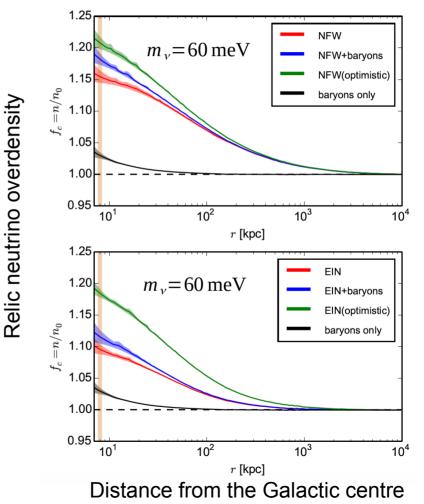

Not a well-studied subject, although obviously important for direct detection of the relic neutrino background (next talk)

"Toy model" of relic neutrino gravitational clustering...

... in a Milky Way-like object

Overdensity expected at the solar system (~10 kpc from GC) depends strongly on the individual neutrino mass.

- For neutrino masses consistent with cosmological bounds, expect no more than factor of 2 enhancement.
- Caveat: calculations assumed SM neutrinos. Can nonstandard interaction improve overdensity?


"Toy model" of relic neutrino gravitational clustering...

... in a Milky Way-like object

Overdensity expected at the solar system (~10 kpc from GC) depends strongly on the individual neutrino mass.

- For neutrino masses consistent with cosmological bounds, expect no more than factor of 2 enhancement.
- Caveat: calculations assumed SM neutrinos. Can nonstandard interaction improve overdensity?

De Salas, Gariazzo, Lesgourgues & Pastor 2017

Summary...

- Relic neutrinos = a necessary consequence of embedding the SM in cosmology
- Strong constraints can be obtained on the neutrino mass sum, the effective number of neutrinos, and non-standard interactions from CMB and large-scale structure observations
 - Neutrino physics may contribute to an extent to alleviating the H_0 tension.
- CMB/large-scale structure constraints on neutrino mass sum also imply limited enhancement in the local (Milky Way) relic neutrino density, if neutrinos only have SM interactions.
 - How non-standard interactions affect the local relic neutrino density has yet to be explored.