

Coherent and incoherent neutrino-nucleus elastic and inelastic scattering

Dmitry V. Naumov JINR

Relative phase of two waves is

Neutrino-Nucleus Coherent Scattering

Introduction to Freedman's Theory

D.Z. Freedman. Phys.Rev. D9 1389 (1974)

Assuming nucleons have definite 3coordinates x_k the amplitude

$$\mathscr{A} = \sum_{k=1}^{N} \mathscr{A}_{k} e^{i\mathbf{q}\mathbf{x}_{k}}$$

-Z, q (000)

Coherence condition

 $|\mathbf{q}|\mathbf{R}\ll 1$

• If $qx_k \approx qx_j$ for any k, j amplitudes sum up coherently

 $\mathscr{A} \simeq NF(\mathbf{q})\mathscr{A}_{\mathbf{0}}$

Nucleus Form-factor

$$F(\mathbf{q}) = \int \mathbf{d}\mathbf{x}\rho(\mathbf{x})\mathbf{e}^{\mathbf{i}\mathbf{q}\mathbf{x}}$$

Loss of coherence

Difference of phase of scattered waves leads to a loss of coherence $\Delta \varphi = q(x_j - x_k)$ Coherence condition $|q|R \ll 1$

• Solution Coherent cross-section • The vertex f = n, p f = n, pf = n, p

The cross-section for spin-even nucleus

 $\sigma \propto \left| g_V^n N F_n(\mathbf{q}) + \mathbf{g}_V^\mathbf{p} \mathbf{Z} \mathbf{F}_\mathbf{p}(\mathbf{q}) \right|^2 \simeq N^2 (g_V^n)^2 \left| F_n(\mathbf{q}) \right|^2,$

Axial couplings do not contribute for spin-even nucleus
 Protons do not matter $g_V^p = \frac{1}{2} - 2\sin^2\theta_W \approx 0.023$

Coherent cross-section

 \circ N^2 times larger than on a free nucleon

- N times larger than an incoherent scattering off a nucleus
- Observable: kinetic energy (T_A) of the scattered nucleus

$$T_A = \frac{\mathbf{q}^2}{2M_A} = 5 \ \mathbf{eV} \left(\frac{q}{\mathbf{MeV}}\right)^2 \left(\frac{100 \ \mathbf{GeV}}{M_A}\right)$$

Very hard to detect so small kinetic energy!
 Go to large q? $q \ll \frac{1}{R_A} \simeq 40 \text{ MeV}$ $\hookrightarrow T_A(40 \text{ MeV}) = 8 \text{ keV}$

This is why coherent scattering evaded its detection four decades

Today's state-of-the-art summary

	COHERENT	nugen	DarkSide
Energy Threshold, keV	5	1	0.6
Petector	Csi (Nal)	Ge bolometer	LAr TPC

Coherent and incoherent Short summary so far

Coherent:
N² dependence $E_{\nu} \ll 20$ MeV

Coherence condition $|q|R \ll 1$

$$\mathscr{A}|^2 = |\sum_k A_k|^2 \simeq N^2 |A_0|^2$$

Incoherent:

N dependence

Can be obtained assuming N independent scatterers

$$|\mathscr{A}|^2 = \sum_k |A_k|^2 \simeq N |A_0|^2$$

DISCOVERY of COHERENT scattering by COHERENT Collaboration

- Spallation Neutron Source @ Oak Ridge National Laboratory
- 60 Hz 1µs wide spills
- Strong background suppression due to beam timing
- Neutrino energy is some tens of MeV
- \odot 1.18 p.e./keV and expected T_A is of the order of 15 keV
 - Is p.e. for the signal. Hard but possible if beam timing is possible

D. Akimov et al. (COHERENT), Science (2017), 10.1126/sci-ence.aao0990

Significance 6.7 o

Neutrino-Nucleus Coherent Scattering

Back to Theory

The cross-section $\sigma \propto N^2 |F_n(\mathbf{q})|^2$ vanishes at large q

Neutrino does not interact with a nucleus at large q?!
 Where is an incoherent scattering? qR=(1,2.7)

- Literature on neutrino-nucleus scattering lacks a formula for both coherent and incoherent scattering
- At the same time for electrons, gamma and neutron scatterings such considerations do exist
- So, our motivation was to build an appropriate theory for neutrino-nucleus scattering from first principles
- As a result, we found that the Freedman's picture for the coherence is inappropriate

V.A. Bednyakov, D.V. Naumov. Phys.Rev. D98 (2018) no.5 053004

Revising the paradigm

Freedman assumed nucleons at fixed positions

$$\mathscr{A} = \sum_{k=1}^{A} \mathscr{A}_{k} e^{i\mathbf{q}\mathbf{x}_{k}}$$

Particles with definite positions have undefined momenta:

- In contrast to be at rest as was assumed by Freedman
- Not possible to make a bound state = nucleus

Nucleons in a nucleus should be described by a wavefunction accounting for their indistinguishability

Revising the paradigm

Freedman assumed nucleons at fixed positions

Also, silently he assumed nucleus remains in the same state

Experimentally not justified

Revising the paradigm

Freedman assumed nucleons at fixed positions

$$\mathscr{A} = \sum_{k=1}^{A} \mathscr{A}_{k} e^{i\mathbf{q}\mathbf{x}_{k}}$$

A Revision

• With multi-particle wave-function $\psi_{n/m}(\mathbf{x_1}...\mathbf{x_A})$ $\mathscr{A}_{nn} = \sum_{k=1}^{A} \mathscr{A}_{nn}^k f_{nn}^k(\mathbf{q}),$

• where $f_{mn}^k(\mathbf{q}) = \langle \mathbf{m} | \mathbf{e}^{\mathbf{i}\mathbf{q}\hat{\mathbf{X}}_k} | \mathbf{n} \rangle$ replaces $e^{i\mathbf{q}\mathbf{x}_k}$

• Elastic process. Nucleus remains in the same state $|m\rangle = |n\rangle$ $\lim_{q \to 0} \langle n | e^{iq\hat{X}_k} | n \rangle = 1 \quad \longrightarrow \quad |\mathscr{A}|^2 = A^2 |\mathscr{A}_0|^2$

These are features reminding 'coherent' scattering

Inelastic process. Nucleus changes the state

 $|m\rangle \neq |n\rangle$

These are features opposite to 'coherent' scattering Give rise to 'incoherent' scattering

Coherence and incoherence in elastic and inelastic neutrino-nucleus scattering

Derivation simplified for this talk

If experiment is sensitive to differentiate an excited nucleus by its kinetic energy?

No. The kinetic energy of a scattered nucleus is essentially the same

The observable is a sum over all final states

The observable cross-section $\frac{d\sigma}{d\Omega} \propto \sum_{m} |\mathscr{A}_{mn}|^2 = |\mathscr{A}_0|^2 \sum_{k,j} \sum_{m} \langle n | e^{-i\mathbf{q}\hat{\mathbf{X}}_j} | m \rangle \langle m | | e^{+i\mathbf{q}\hat{\mathbf{X}}_k} | n \rangle.$ \odot Using $\sum |m\rangle\langle m| = \hat{I}$ $|\mathscr{A}|^{2} = |\mathscr{A}_{0}|^{2} \sum \langle n | e^{-i\mathbf{q}\hat{\mathbf{X}}_{j}} e^{i\mathbf{q}\hat{\mathbf{X}}_{k}} | n \rangle.$ k.i Considering terms with k=j and the rest terms 0 $|\mathscr{A}|^{2} = |\mathscr{A}_{0}|^{2} \left(A + A(A - 1)G(\mathbf{q})\right),$ where 0 $G(\mathbf{q}) = \mathbf{A}^{-1}(\mathbf{A} - \mathbf{1})^{-1} \sum \langle \mathbf{n} | \mathbf{e}^{-\mathbf{i}\mathbf{q}\hat{\mathbf{X}}_{\mathbf{j}}} \mathbf{e}^{\mathbf{i}\mathbf{q}\hat{\mathbf{X}}_{\mathbf{k}}} | \mathbf{n} \rangle$ K≠ĭ

$|\mathscr{A}|^{2} = |\mathscr{A}_{0}|^{2} A + A(A - 1) \underbrace{G(\mathbf{q})}_{elastic+inelastic}$

 \odot G(q) describes pair correlation. Elastic and inelastic both contribute

 $\lim_{q \to \infty} G(q) = 0 \text{ and } |\mathscr{A}|^2 \to A |\mathscr{A}_0|^2 \text{ (incoherent)}$ 0 $q \rightarrow \infty$

In elastic only process $|\mathcal{A}|^2 = A^2 |\mathcal{A}_0|^2 |F(\mathbf{q})|^2$

Thus, it is convenient

 $\left| \mathscr{A} \right|^{2} = \left| \mathscr{A}_{0} \right|^{2} \left| \underbrace{A^{2} \left| F(\mathbf{q}) \right|^{2}}_{elastic} + \underbrace{A^{2}(G(\mathbf{q}) - \left| \mathbf{F}(\mathbf{q}) \right|^{2}) + \mathbf{A}(\mathbf{1} - \mathbf{G}(\mathbf{q}))}_{inelastic} \right|.$

$$|\mathscr{A}|^{2} = |\mathscr{A}_{0}|^{2} |A^{2}|F(\mathbf{q})|^{2} + A^{2}(G(\mathbf{q}) - |\mathbf{F}(\mathbf{q})|^{2}) + \mathbf{A}(\mathbf{1} - \mathbf{G}(\mathbf{q}))$$

elastic

inelastic

If pair correlations are ignored $G(q) = |F(q)|^2$

 $\left|\mathscr{A}\right|^{2} = \left|\mathscr{A}_{0}\right|^{2} \left[A^{2} \left|F(\mathbf{q})\right|^{2} + A(1 - \left|F(\mathbf{q})\right|^{2})\right].$ $\underbrace{A^{2} \left|F(\mathbf{q})\right|^{2}}_{elastic} + A(1 - \left|F(\mathbf{q})\right|^{2})\right].$ inelastic

This is quite general result illustrated in a simplified way

- The actual calculation
 - Within QFT framework of SM
 - Accounting for wave-functions of the nucleons

Compare theory to experiment

Two experimental setups

COHERENT E_v=30-50 MeV nuGEN Reactor anti-neutrino

Differential cross-section for COHERENT

Differential cross-section for nuGEN

Integral Coherent and Incoherent Cross-sections

Integral cross-sections for COHERENT

Incoherent vs Coherent Cross-sections

Short summary

 Now we do have a theory of neutrino-nucleus scattering with appropriate coherent and incoheren regimes

Incoherent scattering is of importance for
 $E_{\nu} \geq 30 \text{ MeV}$

Coherent and incoherent is not very accurate terminology

Better to talk about elastic and inelastic, quadratic and linear as the number of nucleons

Short summary

- Considerations of BSM physics should account for SM incoherent term
- COHERENT Coll. wants to search for excited gammas proposed by us

Kinematic Paradox

- Coherent scattering is essentially an elastic process
- The nucleus remains in the same state
- Neutrino transfers 3-momentum q to the nucleus. What is kinetic energy of the nucleus?

$$T_A = \frac{\mathbf{q}^2}{2M_A}$$

But first neutrino transfers 3-momentum q to a nucleon assumed to be at rest. What is kinetic energy of the nucleon?

$$T_N = rac{{f q}^2}{2M_N}$$
 factor $rac{M_N}{M_A}$ larger

- The nucleon can not change its potential energy because the entire nucleus remains in the same quantum state.
- So, we have a violation of energy conservation

potential energy +
$$\frac{\mathbf{q}^2}{2M_N} \neq$$
 potential energy + $\frac{\mathbf{q}^2}{2M_A}$

What is wrong?

What is wrong?

- One of the assumptions must be wrong.
- We assumed a target nucleon to be at rest. It seems reasonable but this leads to the paradox.
- Which 3-momentum of target nucleon is appropriate to
 Conserve energy-momentum
 - Keep nucleus in the same quantum state

$$\frac{(\mathbf{p} + \mathbf{q})^2}{2M_N} - \frac{\mathbf{p}^2}{2M_N} = \frac{\mathbf{q}^2}{2M_A}$$

The target nucleon momentum

$$\mathbf{p} = -\frac{\mathbf{q}}{2} \left(\mathbf{1} - \frac{\mathbf{M}_N}{\mathbf{M}_A} \right)$$

- Not any nucleon can interact with neutrino to keep the nucleus in the same state
- Find a larger momentum in nucleus is less probable.
 Mathematically this leads to the form-factor $|F(q)|^2$

Example with two balls connected with a spring

Two balls get excited after an interaction. Inelastic scattering

 $\left(\frac{q}{4}\right)^{2} \frac{1}{2m} + \left(\frac{q}{4}\right)^{2} \frac{1}{2m} = \frac{q^{2}}{16m}$ Before: After: $\left(\frac{q}{4}\right)^2 \frac{1}{2m} + \left(\frac{3q}{4}\right)^2 \frac{1}{2m} = \frac{5q^2}{16m}$ Total: Center-of-mass $q^2 4m$ energy: $5q^{2}$ Potential: 16m

QFT derivation In all details

observable differential cross-section defined in Eq. (42)

$$\begin{aligned} \frac{d\sigma}{dT_A} &= \frac{G_F^2 m_A}{2^6 \pi m_N^2 E_\nu^2} \\ \times \sum_{k,j=1}^A \sum_n \omega_n C_{1,mn} C_{2,mn} \left(f_{nn}^k f_{nn}^{j*} \sum_r (l, h_{rr}^k) \sum_s (l, h_{ss}^j)^\dagger \right. \\ &+ \sum_{m \neq n} f_{mn}^k f_{mn}^{j*} \sum_{sr} \lambda_{sr}^{mn} (l, h_{sr}^k) \left(\sum_{s'r'} \lambda_{s'r'}^{mn} (l, h_{s'r'}^j) \right)_{(B24)}^\dagger \end{aligned}$$

expressed through the scalar products $(l, h_{sr}^{p/n})$ of 4-vectors with components $l^{\mu}(k, k')$ given by Eq. (B4) and

$$(h_{sr}^{p/n})_{\mu} = \overline{u}(\boldsymbol{p} + \boldsymbol{q}, s)O_{\mu}^{p/n}u(\boldsymbol{p}, r)$$
(B25)

where p is a solution of Eq. (32). In Eq. (B25) a superscript p or n appears when the index k in h_{sr}^k from Eq. (B24) points to a proton or to a neutron, respectively.

When an index k or j in Eq. (B24) points to a proton/neutron, the form-factors f_{mn}^k should be read as $f_{mn}^{p/n}$, correspondingly.

Each of the $|(l, h^{p/n})|^2$ terms given by Eqs. (C12) and (C33) yields the common factor $64(s - m_N^2)^2$, where $s = (p + k)^2$ is the total energy squared in the neutrino-nucleon center-of-mass frame, and m_N is the mass of the nucleon. In the leading non-relativistic approximation this factor can be approximated as $2^8 m_N^2 E_{\nu}^2$. We denote a correction to this formula by a factor $C_{3,mn}$, accounting for the fact that the nucleon in the initial state has a non-zero three-momentum

$$(s - m_N^2)^2 = 4m_N^2 E_\nu^2 C_{3,mn}.$$
 (B26)

In what follows we denote by g^{mn} the product of correction factors

$$g^{mn} = C_{1,mn} C_{2,mn} C_{3,mn}$$
(B27)

which is of the order of unity.

Following our discussion of Eq. (37) we identify the second and third lines of Eq. (B24) as contributing to the coherent and incoherent cross-sections. The factor g^{mn} is, in general, different for coherent and incoherent terms. We take out these factors from the double summation at their effective Let us work out the incoherent scattering encoded in the third line of Eq. (B24). A summation over m, n cannot be done without a model for λ_{sr}^{mn} . If λ_{sr}^{mn} would not depend on m, n the corresponding summation could be performed as follows.

Consider the case when k and j point to the same type of the nucleon, for example, to a proton.

If k = j, then

$$\sum_{n} \omega_{n} \sum_{m \neq n} f_{mn}^{k} f_{mn}^{k*} = \sum_{n} \omega_{n} \left[\sum_{m} f_{mn}^{k} f_{mn}^{k*} - f_{nn}^{k} f_{nn}^{k*} \right]$$
$$= \sum_{n} \omega_{n} \left[\langle n | e^{-i\boldsymbol{q} \boldsymbol{X}_{k}} \sum_{m} | m \rangle \langle m | e^{i\boldsymbol{q} \boldsymbol{X}_{k}} | n \rangle \right] - |F_{p}(\boldsymbol{q})|^{2}$$
$$= 1 - |F_{p}(\boldsymbol{q})|^{2},$$
(B30)

accounting for the equality $\sum_{m} |m\rangle \langle m| = \hat{I}$, using Eq. (B28) and normalizations in Eq. (A23) and $\sum_{n} \omega_{n} = 1$.

If $k \neq j$ then following a consideration similar to Eq. (B30) one may find that

$$\sum_{n} \omega_n \sum_{m \neq n} f_{mn}^k f_{mn}^{j*} = \langle \operatorname{cov}(e^{-i\boldsymbol{q}\hat{\boldsymbol{X}}_j}, e^{i\boldsymbol{q}\hat{\boldsymbol{X}}_k}) \rangle_p \quad (B31)$$

where the right-hand-side of Eq. (B31) is a covariance of quantum operators $e^{-iq\hat{X}_j}$ and $e^{iq\hat{X}_k}$ on $|n\rangle$, whose state reads

$$\begin{aligned} & \operatorname{cov}_{nn}(e^{-i\boldsymbol{q}\hat{\boldsymbol{X}}_{j}}, e^{i\boldsymbol{q}\hat{\boldsymbol{X}}_{k}}) \\ &= \langle n|e^{-i\boldsymbol{q}\hat{\boldsymbol{X}}_{j}}e^{i\boldsymbol{q}\hat{\boldsymbol{X}}_{k}}|n\rangle - \langle n|e^{i\boldsymbol{q}\hat{\boldsymbol{X}}_{k}}|n\rangle\langle n|e^{-i\boldsymbol{q}\hat{\boldsymbol{X}}_{j}}|n\rangle. \end{aligned} \tag{B32}$$

The subscript p in Eq. (B31) refers to a proton. The averaging $\langle \dots \rangle$ in Eq. (B31) is given by

$$\langle \operatorname{cov}(e^{-i\boldsymbol{q}\hat{\boldsymbol{X}}_{j}}, e^{i\boldsymbol{q}\hat{\boldsymbol{X}}_{k}})\rangle_{p} = \sum_{n} \omega_{n} \operatorname{cov}_{nn}(e^{-i\boldsymbol{q}\hat{\boldsymbol{X}}_{j}}, e^{i\boldsymbol{q}\hat{\boldsymbol{X}}_{k}}).$$
(B33)

At both, $\boldsymbol{q} \to 0$ and $\boldsymbol{q} \to \infty$

$$\lim_{\boldsymbol{q}\to 0} \langle \operatorname{cov}(e^{-i\boldsymbol{q}\hat{\boldsymbol{X}}_j}, e^{i\boldsymbol{q}\hat{\boldsymbol{X}}_k}) \rangle_p = 0,$$
$$\lim_{\boldsymbol{q}\to\infty} \langle \operatorname{cov}(e^{-i\boldsymbol{q}\hat{\boldsymbol{X}}_j}, e^{i\boldsymbol{q}\hat{\boldsymbol{X}}_k}) \rangle_p = 0.$$

) can be rewritten, factoring out the N and the factor $C_{mn,1}$ of the order

$$\frac{P_n^0}{E_p} \frac{P_m^{\prime 0}}{E_{p+q}} \right)^{1/2} \frac{m_N}{m_A}.$$
 (B19)

7) and (B19), one can repre-7).

Cross-sections

esponding to the matrix element

$$\frac{E_{\nu} - E_{\nu}' - T_A - \Delta \varepsilon_{mn}}{m_A + T_A + \varepsilon_m},$$
 (B20)

les are given in the laboratory frame is is assumed to be at rest, E'_{ν} is $nn = \varepsilon_m - \varepsilon_n$. The kinetic energy is given by Eqs. (26) and (27). be done with help of a Dirac δ conservation, thus yielding

$$\frac{\frac{2}{\varepsilon_n}}{\frac{E_{\nu}'(m_A + T_A)}{E_{\nu}(m_A + T_A + \varepsilon_m)}}{\frac{1}{-\cos\theta} - \Delta\varepsilon_{mn}},$$
(B21)

1 using a very accurate approxima-

(PJ/· (1121)

(B34)

and

Additional matter

De-excitation gammas

Inelastic interactions

Produce nucleus in an excited state

- De-excitation of a nucleus often releases gammas which could be detected
- Detection of de-excitation gammas could help to constrain the nucleus form-factor and more accurately measure the elastic part.

 $f_{mn}^{k}(\mathbf{q}) = \langle \mathbf{m} | \mathbf{e}^{\mathbf{i}\mathbf{q}\hat{\mathbf{X}}_{k}} | \mathbf{n} \rangle$ = $\int \left(\prod_{i=1}^{A} d\mathbf{x}_{i} \right) \psi_{\mathbf{m}}^{*}(\mathbf{x}_{1}...\mathbf{x}_{A}) \psi_{\mathbf{n}}(\mathbf{x}_{1}...\mathbf{x}_{A}) \mathbf{e}^{\mathbf{i}\mathbf{q}\mathbf{x}_{k}},$

Neutrino-Nucleus Coherent Scattering

Experiment

How to detect some keV kinetic energy of a nucleus?

- (i) Scintillator: Ionization —> Photons —> Photoelectrons
 - Energy of one photon with $\lambda = 300$ nm is about 4 eV
- How many such photons could be produced with 1 keV?
- 250 is an upper bound.
- For liquid scintillators 8-12 photons/keV
- For solid state scintillators, like Nal, 40 photons/keV
- These numbers are for gamma or electron with 1 keV
- A nucleus produces an order of magnitude less number of photons

How to detect some keV kinetic energy of a nucleus? (i) Scintillator: Ionization —> Photons —> Photoelectrons In liquid scintillators a nucleus 1 photon/keV -> 0.2 p.e./keV In solid state scintillators, like Nal, a nucleus 6 4 photons/keV-> 1p.e./keV

How to detect some keV kinetic energy of a nucleus?

(ii) Semiconductor detector:

lonization —> electrons and holes —> electric signal

Energy needed to produce a pair: electron+hole is about 1-2 eV

1 keV electron —> 500-1000 electrons which give a detectable current

- Ge detectors @nuGEN. The lowest energy of
 electrons is 200 eV
 - Ge nucleus is about 1 keV

How to detect some keV kinetic energy of a nucleus?

(ii) Liquid Argon TPC:

lonization —> electrons and photons —> photons @SiPM

In ParkSide. The lowest energy of Ar nucleus is about 0.6 keV

