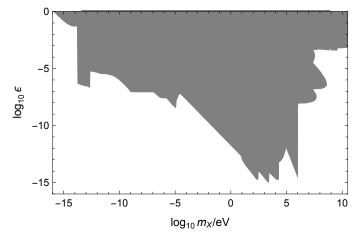
The Price of Tiny Kinetic Mixing

Jörn Kersten

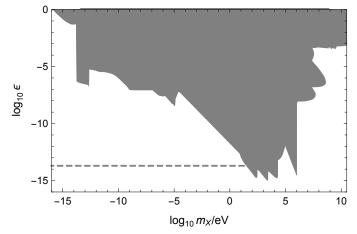
UNIVERSITY OF BERGEN

Based on Tony Gherghetta, JK, Keith Olive, and Maxim Pospelov, arXiv:1909.00696

2 Bottom-Up Models

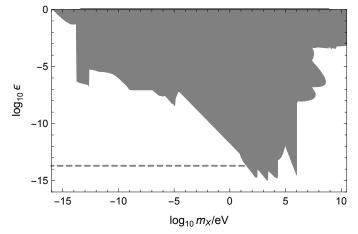


Dark Photons with Kinetic Mixing


- No new physics at LHC ~> hiding at low energies?
- One candidate: gauge boson X^{μ} of new $U(1)_X$ (dark photon)
- Mass *m_X* from Brout-Englert-Higgs or Stückelberg mechanism
- Applications: dark matter candidate, mediator of dark matter self-interactions, (g – 2)_μ, ...
- Possibly part of dark sector
- Simplest way to couple to Standard Model: kinetic mixing with U(1)_Y gauge boson B^μ

$$\mathcal{L}_{\mathsf{km}} = -rac{1}{2} \, \epsilon \, B_{\mu
u} X^{\mu
u}$$

 \rightsquigarrow kinetic mixing with photon ($\epsilon \cos \theta_W$) and Z ($\epsilon \sin \theta_W$) See talks by Lee, Park, Bertuzzo, Brdar


Redondo, personal communication; Beacham et al., arXiv:1901.09966

Redondo, personal communication; Beacham et al., arXiv:1901.09966

Dark photon mass from dark Higgs: $g_X \epsilon \lesssim 10^{-14}$ for $m_X \lesssim 10$ keV

Ahlers, Jaeckel, Redondo, Ringwald, PRD 78 (2008)

Redondo, personal communication; Beacham et al., arXiv:1901.09966

 $\rightsquigarrow \epsilon \lesssim 10^{-15} \dots 10^{-7}$ for $\mu \text{eV} \lesssim m_X \lesssim 10 \text{ MeV}$

→ How to get such a small number from a model?

- Vanishing kinetic mixing at high scale
- Field with mass *M* charged under $U(1)_X$ and $U(1)_Y$

$$\xrightarrow{B^{\nu}} \underbrace{X^{\mu}}_{X^{\mu}} \rightsquigarrow \epsilon \sim \frac{g'g_X}{8\pi^2} \ln \frac{M}{\mu} \sim 10^{-3} \dots 10^{-1} \gg 10^{-7}$$

Holdom, PLB 166 (1986)

• Non-decoupling effect ~> large *M* does not help

Known Suppression Mechanisms

• Fine-tuned cancellation between tree level and loop correction

• $g_X \ll 1$ from LARGE volume string compactifications Burgess et al., JHEP 07 (2008)

Cicoli, Goodsell, Jaeckel, Ringwald, JHEP 07 (2011)

- Cancellation due to mass degeneracy
 - SUSY, string theory Dienes, Kolda, March-Russell, NPB 492 (1997)
 - GUTs Arkani-Hamed, Weiner, JHEP 12 (2008)
- Type-II string theory with warped extra dimensions and fluxes Abel et al., JHEP 07 (2008)
- 4-loop suppression in mirror-symmetric twin Higgs model Chacko, Goh, Harnik, PRL 96 (2006) Koren, McGehee, arXiv:1908.03559
- 2 additional options to be mentioned later

Known Suppression Mechanisms

Fine-tuned cancellation between tree level and loop correction

• $g_X \ll 1$ from LARGE volume string compactifications Burgess et al., JHEP 07 (2008)

Cicoli, Goodsell, Jaeckel, Ringwald, JHEP 07 (2011)

- Cancellation due to mass degeneracy
 - SUSY, string theory Dienes, Kolda, March-Russell, NPB 492 (1997)
 - GUTs Arkani-Hamed, Weiner, JHEP 12 (2008)
- Type-II string theory with warped extra dimensions and fluxes Abel et al., JHEP 07 (2008)
- 4-loop suppression in mirror-symmetric twin Higgs model Chacko, Goh, Harnik, PRL 96 (2006) Koren, McGehee, arXiv:1908.03559
- 2 additional options to be mentioned later
- \rightsquigarrow Additional ways to get $\epsilon \lesssim 10^{-7}$ for $g_X \sim g' \sim 1$?

- Additional gauge group $U(1)_M$, broken above TeV-scale
- $\bullet\,$ Heavy fermions ψ and χ

		Charge	
	$U(1)_Y$	$U(1)_M$	$U(1)_{X}$
ψ	1	1	0
χ	0	1	1

- Additional gauge group $U(1)_M$, broken above TeV-scale
- $\bullet\,$ Heavy fermions ψ and χ

	Charge		
	$U(1)_Y$	$U(1)_M$	$U(1)_X$
ψ	1	1	0
χ	0	1	1

→ Kinetic mixing at 2-loop order?

 ψ

- Additional gauge group $U(1)_M$, broken above TeV-scale
- Heavy fermions ψ and χ

		Charge	
	$U(1)_Y$	$U(1)_M$	$U(1)_{X}$
ψ	1	1	0
χ	0	1	1

→ Kinetic mixing at 2-loop order?

- \rightsquigarrow Operator with derivatives of $B^{\mu\nu}$ and $X^{\mu\nu}$
- → Does not contribute to kinetic mixing

→ Kinetic mixing at 3-loop order?

→ Kinetic mixing at 3-loop order?

$$\mathcal{W}$$
 ψ \mathcal{W} \mathcal{X} \mathcal{X}^{μ} \mathcal{X} by Furry's theorem

→ Kinetic mixing at 3-loop order?

→ Kinetic mixing at 4-loop order

$$\overset{B^{\nu}}{\longrightarrow} \psi \overset{M^{\lambda}}{\longrightarrow} \chi \overset{X^{\mu}}{\longrightarrow} \sim \epsilon \sim \left(\frac{1}{16\pi^2}\right)^4 \sim 10^{-9}$$

→ Kinetic mixing at 3-loop order?

→ Kinetic mixing at 4-loop order

$$\overset{B^{\nu}}{\longrightarrow} \psi \overset{M^{\lambda}}{\longrightarrow} \chi \overset{X^{\mu}}{\longrightarrow} \sim \epsilon \sim \left(\frac{1}{16\pi^2}\right)^4 \sim 10^{-9}$$

Similar model with $U(1)_M \rightarrow SU(3)_c$: Dunsky, Hall, Harigaya, JHEP 07 (2019)

Gauged Clockwork

Giudice, McCullough, JHEP 02 (2017); Lee, PLB 778 (2018)

- N + 1 gauge symmetries $U(1)_i$, i = 0, ..., N
- Equal gauge coupling g
- Corresponding gauge fields A^i_{μ}
- N Higgs fields φ_j, j = 0,..., N − 1, each with charges (1, −q) under U(1)_j × U(1)_{j+1} (and charge 0 under the other groups)

•
$$\langle \phi_j \rangle = f$$
 for all $j \rightsquigarrow U(1)^{N+1} \rightarrow U(1)_X$

Gauged Clockwork

Giudice, McCullough, JHEP 02 (2017); Lee, PLB 778 (2018)

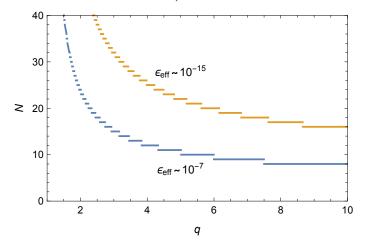
- N + 1 gauge symmetries $U(1)_i$, i = 0, ..., N
- Equal gauge coupling g
- Corresponding gauge fields A^i_{μ}
- *N* Higgs fields φ_j, j = 0,..., N − 1, each with charges (1, −q) under U(1)_j × U(1)_{j+1} (and charge 0 under the other groups)

•
$$\langle \phi_j \rangle = f$$
 for all $j \rightsquigarrow U(1)^{N+1} \rightarrow U(1)_X$

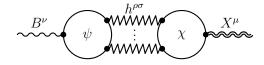
- Diagonalize gauge boson mass matrix
 → zero mode = dark photon = linear combination of all Aⁱ_µ
- Field charged only under $U(1)_N$: coupling to dark photon $g_{\text{eff}} \sim \frac{g}{q^N}$ exponentially suppressed

Gauged Clockwork

Giudice, McCullough, JHEP 02 (2017); Lee, PLB 778 (2018)


- N + 1 gauge symmetries $U(1)_i$, i = 0, ..., N
- Equal gauge coupling g
- Corresponding gauge fields A^i_{μ}
- *N* Higgs fields φ_j, j = 0,..., N − 1, each with charges (1, −q) under U(1)_j × U(1)_{j+1} (and charge 0 under the other groups)

•
$$\langle \phi_j \rangle = f$$
 for all $j \rightsquigarrow U(1)^{N+1} \rightarrow U(1)_X$


- Diagonalize gauge boson mass matrix
 → zero mode = dark photon = linear combination of all Aⁱ_µ
- Field charged only under $U(1)_N$: coupling to dark photon $g_{\text{eff}} \sim \frac{g}{q^N}$ exponentially suppressed
- Continuum limit $N
 ightarrow \infty$: equivalent to 5D theory, $g_{
 m eff} \sim e^{-kR}$

Clockwork-Suppressed Kinetic Mixing

Kinetic mixing of B_{μ} only with A^{N}_{μ} \rightsquigarrow mixing with dark photon $\epsilon_{\text{eff}} \sim \frac{\epsilon}{\alpha^{N}}$ can be tiny even for $\epsilon \sim 1$

- Visible and dark sector only connected via gravity
- No separate C conservation in dark sector
- Divergent graviton loops $\rightsquigarrow \epsilon \sim \left(\frac{\Lambda}{M_{\rm Pl}}\right)^n$ unsuppressed if $\Lambda \sim M_{\rm Pl}$

- Visible and dark sector only connected via gravity
- No separate C conservation in dark sector
- Divergent graviton loops $\rightsquigarrow \epsilon \sim \left(\frac{\Lambda}{M_{\mathsf{Pl}}}\right)^n$ unsuppressed if $\Lambda \sim M_{\mathsf{Pl}}$
- $F^{\mu
 u}$ antisymmetric, $g^{\mu
 u}$, $R^{\mu
 u}$ etc. symmetric \rightsquigarrow need \geq 3 gravitons
- $\sum Y_i = \sum Y_i^3 = 0 \rightsquigarrow$ need non-universal couplings in loops

$$\overset{B^{\nu}}{\longleftarrow} \psi \overset{h^{\rho\sigma}}{\underset{\vdots}{\longleftarrow}} \chi \overset{X^{\mu}}{\longleftarrow} \chi$$

- Visible and dark sector only connected via gravity
- No separate C conservation in dark sector
- Divergent graviton loops $\rightsquigarrow \epsilon \sim \left(\frac{\Lambda}{M_{\mathsf{Pl}}}\right)^n$ unsuppressed if $\Lambda \sim M_{\mathsf{Pl}}$
- $F^{\mu
 u}$ antisymmetric, $g^{\mu
 u}$, $R^{\mu
 u}$ etc. symmetric \rightsquigarrow need \geq 3 gravitons
- $\sum Y_i = \sum Y_i^3 = 0 \rightsquigarrow$ need non-universal couplings in loops

$$\overset{B^{\nu}}{\longleftarrow} \overset{h^{\rho\sigma}}{\longleftarrow} \overset{\chi^{\mu}}{\longleftarrow} \overset{\chi^{\mu}}{\longleftarrow} \overset{\chi^{\mu}}{\longleftarrow} \overset{\chi^{\mu}}{\longleftarrow} \overset{\chi^{\mu}}{\longleftarrow} \overset{\chi^{\mu}}{\longleftarrow} \overset{\chi^{\mu}}{\longleftarrow} \overset{\chi^{\mu}}{\longleftarrow} \overset{\chi^{\mu}}{\longrightarrow} \overset{\chi^{\mu}}{\to} \overset{\chi$$

- Visible and dark sector only connected via gravity
- No separate C conservation in dark sector
- Divergent graviton loops $\rightsquigarrow \epsilon \sim \left(\frac{\Lambda}{M_{\mathsf{Pl}}}\right)^n$ unsuppressed if $\Lambda \sim M_{\mathsf{Pl}}$
- $F^{\mu
 u}$ antisymmetric, $g^{\mu
 u}$, $R^{\mu
 u}$ etc. symmetric \rightsquigarrow need \geq 3 gravitons
- $\sum Y_i = \sum Y_i^3 = 0 \rightsquigarrow$ need non-universal couplings in loops

Embedding Light and Dark Photons in a Single Group

• $G_{SM} \times U(1)_X \subset \text{non-Abelian group } G$

 $\rightsquigarrow \epsilon = \mathbf{0}$ at breaking scale of \boldsymbol{G}

 \sim Stückelberg mass excluded $\sim g_X \epsilon \lesssim 10^{-14}$ or $m_X \gtrsim 10$ keV

Embedding Light and Dark Photons in a Single Group

- G_{SM} × U(1)_X ⊂ non-Abelian group G
 → ϵ = 0 at breaking scale of G
 → Stückelberg mass excluded → g_X ϵ ≤ 10⁻¹⁴ or m_X ≥ 10 keV
- Light particles charged under both U(1)_Y and U(1)_X
 → generic ε ~ 10⁻³...10⁻¹
- Heavy particles charged under both U(1)_Y and U(1)_X fill complete GUT multiplets
 - $\leadsto \epsilon = \mathbf{0}$ for exact mass degeneracy
 - \rightsquigarrow Expect $\epsilon \sim 10^{-6} \dots 10^{-4}$

Arkani-Hamed, Weiner, JHEP 12 (2008)

 \rightsquigarrow Can be ok for $m_X\gtrsim$ 1 MeV

Embedding Light and Dark Photons in a Single Group

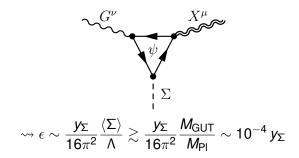
- G_{SM} × U(1)_X ⊂ non-Abelian group G
 → ε = 0 at breaking scale of G
 → Stückelberg mass excluded → g_Xε ≤ 10⁻¹⁴ or m_X ≥ 10 keV
- Light particles charged under both U(1)_Y and U(1)_X
 → generic ε ~ 10⁻³...10⁻¹
- Heavy particles charged under both U(1)_Y and U(1)_X fill complete GUT multiplets
 - $\leadsto \epsilon = \mathbf{0}$ for exact mass degeneracy
 - \rightsquigarrow Expect $\epsilon \sim 10^{-6} \dots 10^{-4}$

Arkani-Hamed, Weiner, JHEP 12 (2008)

ightarrow Can be ok for $m_X\gtrsim$ 1 MeV

- Light particles charged under both U(1)'s hard to avoid Example: $SO(10) \rightarrow SU(5) \times U(1)_X$ Standard Model fields in $16 = (\overline{5}, 3) + (10, -1) + (1, -5)$
- ... but not impossible for sufficiently large groups Example: $E_8 \rightarrow E_6 \times SU(3) \rightarrow E_6 \times U(1)_X$

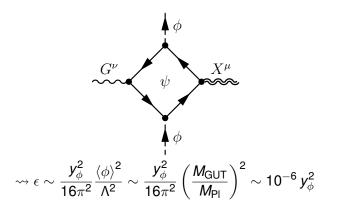
Only Standard Model Embedded in Simple Group


- $G_{SM} \times U(1)_X \subset G_{GUT} \times U(1)_X \rightsquigarrow G^{\mu\nu} X_{\mu\nu}$ not gauge-invariant
- Effective operator $\frac{1}{\Lambda} \Sigma G^{\mu\nu} X_{\mu\nu}$ with scalar Σ can be gauge-invariant $\rightsquigarrow \epsilon \sim \frac{\langle \Sigma \rangle}{\Lambda} \ll 1$

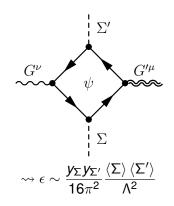
Arkani-Hamed, Weiner, JHEP 12 (2008)

- Generated via loops with heavy particles (mass Λ)
- Alternative: embed $U(1)_X$ in non-Abelian group

Example 1: Adjoint Scalar


- Scalar Σ in adjoint representation of GUT group, no $U(1)_X$ charge
- Vector-like fermion charged under both groups, mass Λ

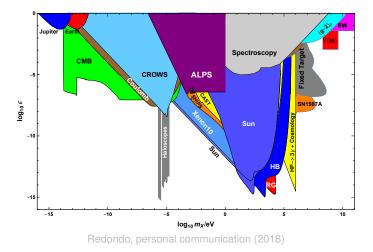
 \rightsquigarrow Ok for moderately small Yukawa coupling y_{Σ}


Example 2: Non-Adjoint Scalar in SU(5)

- Scalar $\phi \sim (75, 0)$ under $SU(5) \times U(1)_X$
- Vector-like fermion $\psi = \chi \sim (10, q)$, mass Λ

Non-Abelian Groups in Both Sectors

- $G_{SM} \times U(1)_X \subset G_{GUT} \times G'$
- Adjoint scalars Σ , Σ'


• $\langle \Sigma' \rangle \ll M_{\rm GUT} \rightsquigarrow {\rm tiny} \ \epsilon$

Goldberg, Hall, PLB 174 (1986)

Kinetic mixing between visible and dark photon severely constrained: $\epsilon \lesssim 10^{-15} \dots 10^{-7}$

~ Scenarios to explain such a small mixing

- Fine-tuning
- String theory
- Generation at high loop order $\rightsquigarrow \epsilon \sim 10^{-13} \dots 10^{-9}$
- Suppression by gauged clockwork
- Gravity mediation $\rightsquigarrow \epsilon \sim 10^{-13}$
- Embedding of both U(1)'s in common group $\rightsquigarrow \epsilon \sim 10^{-6} \dots 10^{-4}$
- Effective operators in GUT $\rightsquigarrow \epsilon \sim 10^{-28} \dots 10^{-4}$
- \rightsquigarrow Tiny kinetic mixing possible, but not for free

Collider limits (BaBar etc.) not included