

The MSW potentials induced by ultralight mediators

Xun-Jie Xu
Max-Planck-Institut für Kernphysik, Heidelberg
in collaboration with Alexei Smirnov

Talk based on: 1909.07505.

NEPLES2019 workshop, http://events.kias.re.kr/h/NEPLES2019/

The Mikheyev-Smirnov-Wolfenstein effect

$$i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = H \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$

$$H = \frac{1}{2E}U\begin{pmatrix} m_1^2 \\ m_2^2 \\ m_3^2 \end{pmatrix}U^{\dagger} + \begin{pmatrix} m_1^2 \\ m_3^2 \end{pmatrix}$$

The Wolfenstein potential: $V = \sqrt{2}G_F n_e$

$$U^{\dagger}+\left(egin{array}{cccc} V & & & \\ & 0 & \\ & & 0 \end{array}
ight)$$

What if ν 's have new interactions?

$$V = n_e \frac{g^2}{m^2}$$

Vector interactions: $H \rightarrow H + V$

Scalar interactions: $m_{\nu} \rightarrow m_{\nu} + V$

Comments on scalar interactions:

• Typically suppressed by m_{ν}/E_{ν} .

- E.g. $m_{\nu} \sim 0.01$ eV, $E_{\nu} \sim 100$ MeV, $\Rightarrow m_{\nu}/E_{\nu} \sim 10^{-10}$
- Impossible to have any significant effect in any realistic experiments.
- at Earth: $m_{\nu} \to m_{\nu} + 0.01 \text{ eV} \Rightarrow \text{in SN}$: $m_{\nu} \to m_{\nu} + 100 \text{ GeV} \Rightarrow \text{no SN } \nu!$

$$V = n_e \frac{g^2}{m^2}$$

Q: always valid?

A: No!

$$R \ll m^{-1}$$

- ullet Consider a simple system, only neutrino (ν) + electron (e) + vector boson (A^{μ})
- Electrons are fixed by external forces, e.g., the electromagnetic (EM) force
- Neutrinos propagate through these electrons
- There are interactions between ν and e, mediated by the vector boson A^{μ} .

$$\mathcal{L} \supset \overline{\nu} i \partial \!\!\!/ \nu - m_{\nu} \overline{\nu} \nu - g \overline{\nu} A \!\!\!/ \nu - g \overline{e} A \!\!\!/ e - \frac{m^2}{2} A^{\mu} A_{\mu}$$

 $\mathcal{L} \Rightarrow EOM$ (equation of motion) \Rightarrow MSW effect

EOM:

$$i\partial \nu - m_{\nu}\nu - gA\nu = 0,$$

$$\left[\partial^{2} + m^{2}\right]A^{\mu} - g\overline{\nu}\gamma_{\mu}\nu - g\overline{e}\gamma_{\mu}e = 0$$

$$\cdots \text{ EOM of electrons}\cdots$$

EOM (equation of motion)

$$i\partial \nu - m_{\nu}\nu - gA\nu = 0,$$

$$\left[\partial^2 + m^2\right]A^{\mu} - g\overline{\nu}\gamma_{\mu}\nu - g\overline{e}\gamma_{\mu}e = 0$$

$$\cdots \text{ EOM of electrons}\cdots$$

Next, solve EOM

the fields of ν , A^{μ} , e are determined by the solutions of EOM

$$e \Rightarrow A^{\mu} \Rightarrow \nu$$

- e field almost determined by the EM force
- \bullet A^{μ} field almost determined by e field
- ullet ν field almost determined by A^{μ} field

assuming: $A^{\mu} \ll$ the EM force

assuming: ν field $\ll e$ field

if ν have no other interactions

EOM

$$i\rlap/\partial\nu-m_\nu\nu-g\rlap/A\nu=0$$

$$\left[\partial^2+m^2\right]A^\mu-g\overline\nu\gamma_\mu\nu-g\overline e\gamma_\mu e=0$$
 assuming: ν field $\ll e$ field

Physical meaning of $g\overline{e}\gamma_{\mu}e$:

see Peskin&Schroeder's textbook

- ullet $J^i \equiv \overline{e} \gamma^i e$ is the electric current density
- $n_e \equiv \overline{e} \gamma^0 e$ is the electron number density Usually electrons in matter are almost at rest $\Rightarrow J^i = 0$. (average velocity =0)

So

$$\overline{e}\gamma^{\mu}e = (n_e, 0, 0, 0)$$

EOM

$$i\partial \nu - m_{\nu}\nu - gA\nu = 0$$

$$[\partial^2 + m^2] A^{\mu} - g\overline{e}\gamma_{\mu}\nu - g\overline{e}\gamma_{\mu}e = 0$$

$$[\partial^2 + m^2] A^{\mu} - g\overline{e}\gamma_{\mu}e = 0$$

$$[\partial^2 + m^2] A^{\mu} - g\overline{e}\gamma_{\mu}e = 0$$

$$[\partial^2 + m^2] A^0 - gn_e = 0$$

$$[\partial^2 + m^2] A^0 - gn_e = 0$$

$$[-\nabla^2 + m^2] A^0 - gn_e = 0$$

The master formula

$$\left[\left[-\nabla^2 + m^2 \right] A^0 = g n_e \right]$$

- It's a differential equation.
- Given the distribution of electron density (n_e) , we can always figure out A^0 by solving the equation.
- Physical meaning: gn_e is the source that excites the A^0 field.
- $[-\nabla^2 + m^2] A^0 = g(n_{e1} + n_{e2} + n_{e3} + \cdots).$

EOM

In the momentum space, $i \not \! \partial \to -p^\mu \gamma_\mu$ so:

$$p^{\mu} \to p^{\mu} + gA^{\mu}$$

$$E = p^{0} \to E + V, \ V \equiv gA^{0}$$

Solve the differential equation

$$\left[-\nabla^2 + m^2 \right] A^0 = g n_e$$

Spherical cows in a vacuum

There's a dairy farm. One day, the milk production was low. So the farmer called a physicist to help. The physicist then did a lot of calculations, and he said: "um, I have a solution, but it only works with spherical cows in a vacuum."

From Wikipedia: https://en.wikipedia.org/wiki/Spherical_cow

Solve the differential equation

$$\left[-\nabla^2 + m^2 \right] A^0 = g n_e$$

Let's assume a spherical cow:

the solution is

$$A^0(r) = \frac{gn_e}{m^2}F(r),$$

$$F(r) = \begin{cases} 1 - \frac{mR+1}{mr} e^{-mR} \sinh(mr) & (r \le R) \\ \frac{e^{-mr}}{mr} \left[mR \cosh(mR) - \sinh(mR) \right] & (r > R) \end{cases}$$

Interesting limits of the spherical cow solution

• very compact cow $(R \to 0 \text{ while } N_e \equiv \frac{4}{3}\pi R^3 n_e = \text{const.})$:

$$V(r) = \frac{g^2}{m^2} N_e \frac{e^{-mr}}{4\pi r}$$

⇒ the well-known Yukawa potential

• long-range interacting cow $(m \to 0)$:

$$V(r) = g^2 n_e \times \begin{cases} \frac{3R^2 - r^2}{6} & (r \le R) \\ \frac{R^3}{3} & (r > R) \end{cases}$$

⇒ the well-known Coulomb potential

Interesting limits of the spherical cow solution

• contact-interacting cow $(m \to \infty)$:

$$V(r) = \begin{cases} \frac{g^2}{m^2} n_e & (r \le R) \\ 0 & (r > R) \end{cases}$$

⇒ the standard Wolfenstein potential

• ν at cow's skin $(|R-r|\ll m^{-1}\ll R)$:

$$V(r) = \frac{1}{2} \frac{g^2}{m^2} n_e$$

Summary

Take-home messages

1. This is a powerful cow

Spherical cow in a vacuum ⇒ Yukawa, Coulomb, Wolfenstein potentials.

2. Scalar matter effect doesn't work

 $\left[-\nabla^2 + m^2 \right] A^0 = g n_e$

requires $10^{10}G_F$, excluded by, e.g., ν free streaming, $m_{\nu} \rightarrow m_{\nu} + \delta m$ in supernova.

3. Vector matter effect works

High energy: normal NSI

Low energy: e.g. $m_A \in [2 \times 10^{-17}, 4 \times 10^{-14}] \text{ eV}, q \sim 10^{-25}.$

Backup

$$\mathcal{L} \supset \overline{\nu} i \partial \!\!\!/ \nu - m_{\nu} \overline{\nu} \nu - g \overline{\nu} A \!\!\!/ \nu - g \overline{e} A \!\!\!/ e - \frac{m^2}{2} A^{\mu} A_{\mu}$$
$$i \partial \!\!\!/ \nu - m_{\nu} \nu - g A \!\!\!/ \nu = 0$$
$$\left[\partial^2 + m^2 \right] A^{\mu} - g \overline{e} \gamma_{\mu} e = 0$$

$$\mathcal{L} \supset \overline{\nu}i\partial \nu - m_{\nu}\overline{\nu}\nu - g\overline{\nu}\phi\nu - g\overline{e}\phi e - \frac{m^2}{2}\phi^2$$
$$i\partial \nu - m_{\nu}\nu - g\phi\nu = 0$$
$$\left[\partial^2 + m^2\right]\phi - g\overline{e}e = 0$$

$Vector \rightarrow Scalar$

$$\left[\partial^2 + m^2\right] A^{\mu} - g\overline{e}\gamma_{\mu}e = 0 \qquad \qquad \left[\partial^2 + m^2\right] \phi - g\overline{e}e = 0$$

$$[-\nabla^2 + m^2] A^0 - gn_e = 0 \qquad [-\nabla^2 + m^2] \phi - gn_e = 0$$

Same equation \Rightarrow same solution!

But!

$$i\partial \nu - m_{\nu}\nu - g \Delta \nu = 0 \qquad \qquad i\partial \nu - m_{\nu}\nu - g \phi \nu = 0$$

$$p^{\mu} \to p^{\mu} + gA^{\mu}$$

$$E \to E + gA^{0}$$

$$m_{\nu} \to m_{\nu} + g\phi$$