

YEONGDUK KIM DIRECTOR OF CUP

NEPLES 2019, KIAS

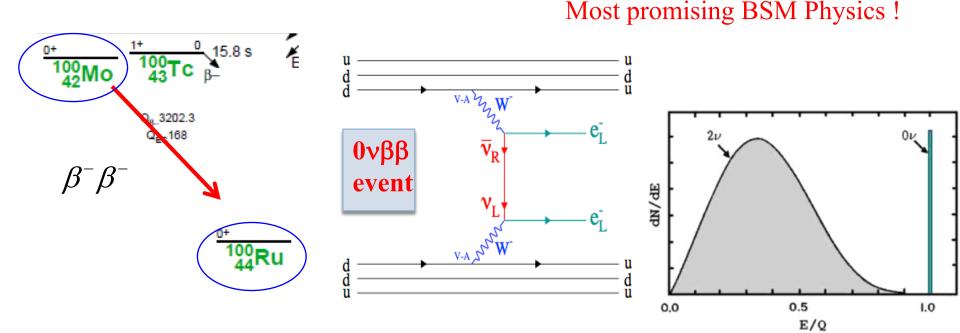
한덕철광

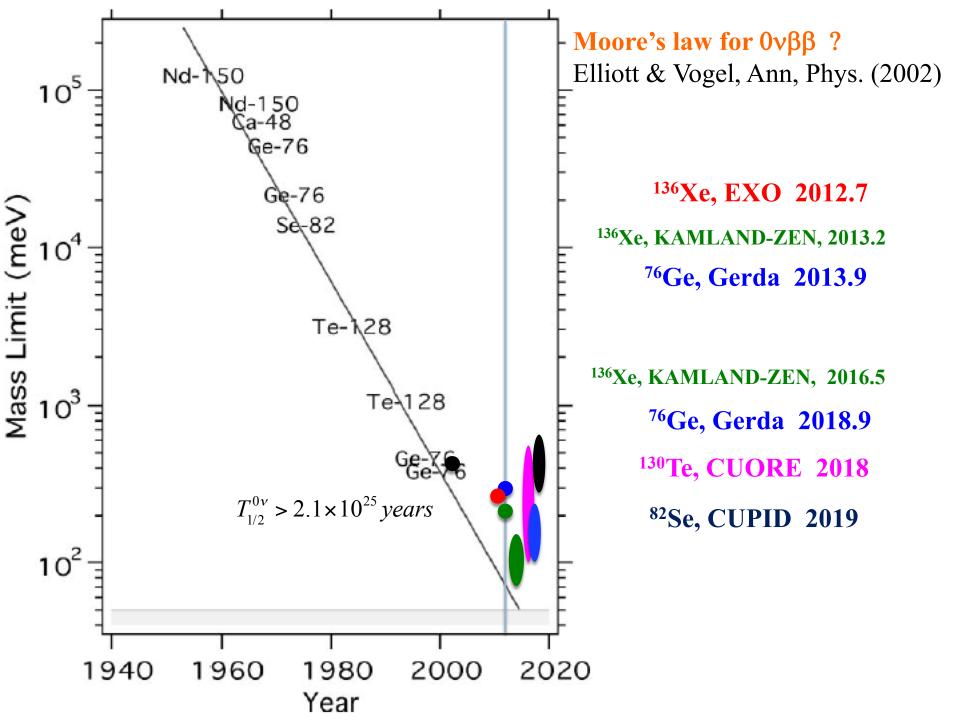
I will talk about

- 1. Overview of Double beta decay
 - 1. Motivation
 - 2. Current Status of experiments
- 2. AMoRE project
 - 1. Overview
 - 2. Current Status
 - 3. Future plan
 - 4. Schedule
- 3. Summary

Neutrino Properties known & still to be determined.

- 3
 - Neutrinos are massive.
 - Neutrinos are from Sun and Supernova
 - All mixing angles and mass differences are measured.
 - Mass Hierarchy ? (Normal Hierarchy is ~ 3 sigma)
 - CP violation in lepton sector ? \rightarrow Leptogenesis
 - Mass scale ?
 - Majorana nature ? See-Saw mechanism.
 - Sterile Neutrinos ? Dark Matter ?
 - Cosmic Neutrino Backgrounds (CNB) Beginning

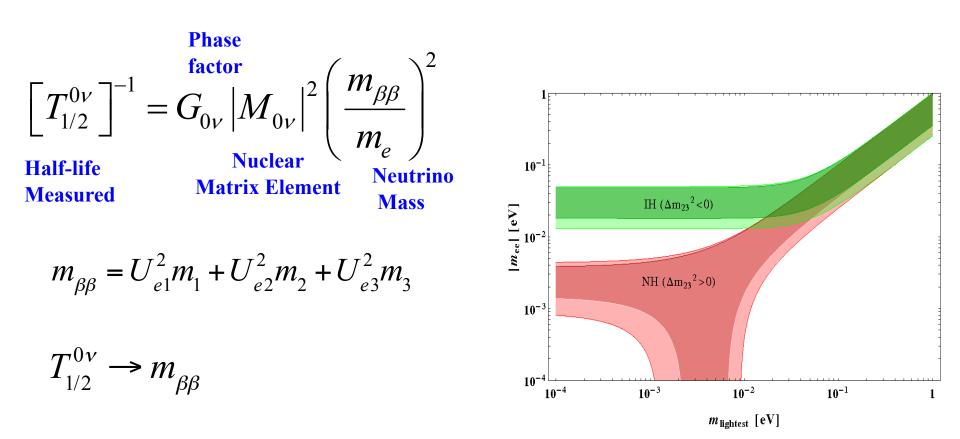

Search for Neutrinoless double beta decay $(0\nu\beta\beta)$


 m'_{τ}

 m_{N}

 m_{v}

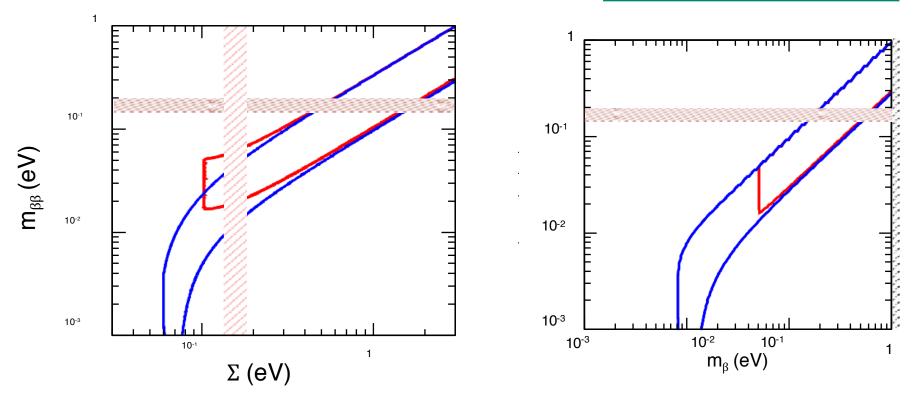
- **Observation of 0vββ will confirm**
 - Neutrinos are Majorana particles and have Majorana masses.
 - Lepton number non-conservation.
- Observation of 0vββ will support more on
 - See-Saw model of the neutrino mass.
 - Leptogenesis to account for the baryon asymmetry of the universe.



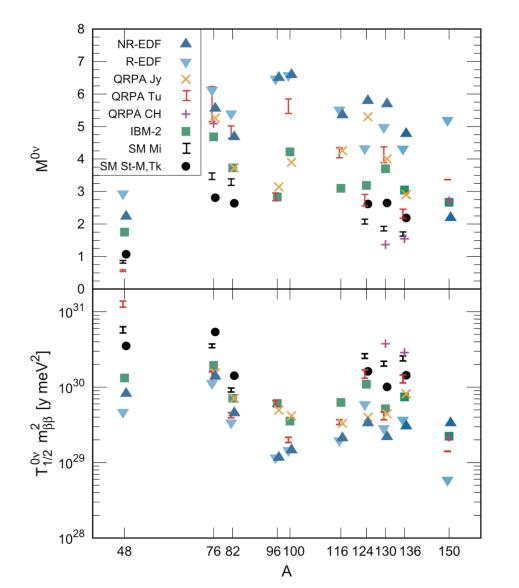
Current best results for $0\nu\beta\beta$

Nucl.	Q (keV)	Abun. (%)	$\begin{array}{c} T_{1/2}^{2\nu} \\ (10^{20} \mathrm{Y}) \end{array}$	Exp	$\frac{T_{1/2}^{0\nu}}{(10^{24}\mathrm{Y})}$	M (eV)	Ref.
⁴⁸ Ca	4270.0	0.187	0.53(0.1)	CANDLES	> 0.058	<3.1-15.4	PRC 78 058501 (2008)
⁷⁶ Ge	2039.1	7.8	18.8(0.8)	GERDA-II	>80	<0.12-0.26	PRL 120, 132503 (2018)
⁸² Se	2997.9	9.2	0.93(0.05)	CUPID-0	> 3.5	< 0.31-0.64	PRL123, 032501 (2019)
¹⁰⁰ Mo	3034.4	9.6	0.0688(0.0025)	NEMO-3	>1.1	< 0.33-0.62	PRD89, 111101 (2014)
¹¹⁶ Cd	2813.4	7.6	0.269(0.009)	AURORA	> 0.19	<1-1.8	nulc-ex/1601.05578.
¹³⁰ Te	2527.5	34.5	7.91(0.21)	CUORE	> 15	<0.11-0.52	PRL120, 132501 (2018)
¹³⁶ Xe	2458.0	8.9	21.8(0.5)	KamLAND -Zen	> 107	<0.06-0.16	PRL117, 082503 (2016)
¹⁵⁰ Nd	3371.4	5.6	0.0934(0.0065)	NEMO-3	> 0.02	<1.6-5.3	PRD 94 072003 (2016)

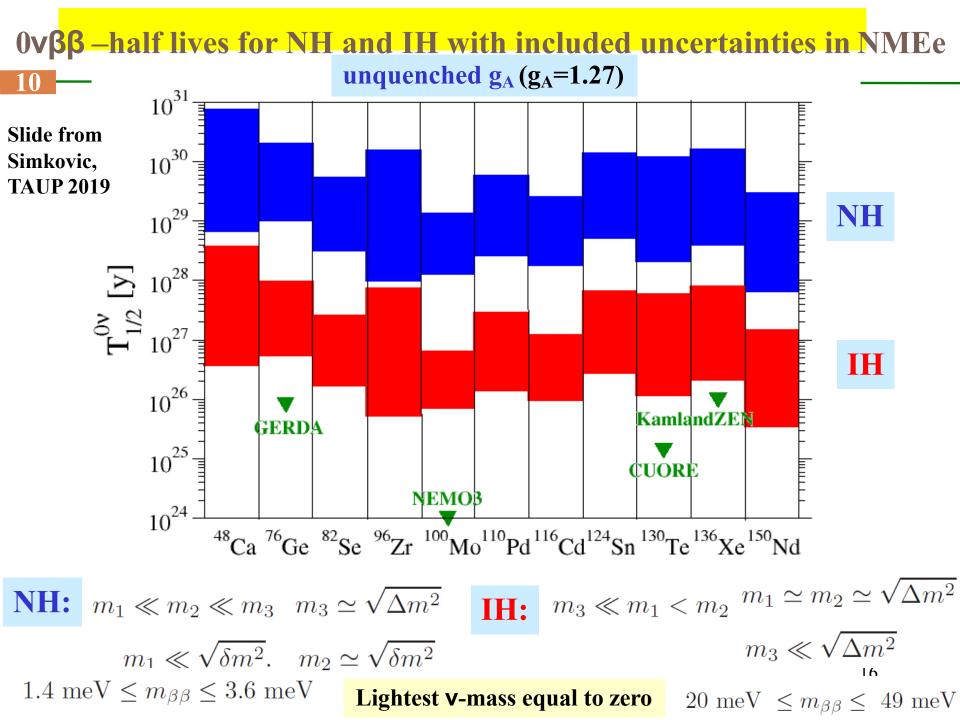
Neutrino mass from 0vββ experiment


- Half-lifves of 0νββ depends on phase factor, matrix element and effective neutrino mass for the simplest light neutrino exchange model.
- Effective neutrino mass depends on mass hierarchy. However, since normal hierarch y is preferred with ~ 3 sigma, it is reasonable not to emphasize mass range from inve rted hierarchy.

• Both double beta and cosmological limits have got severe.

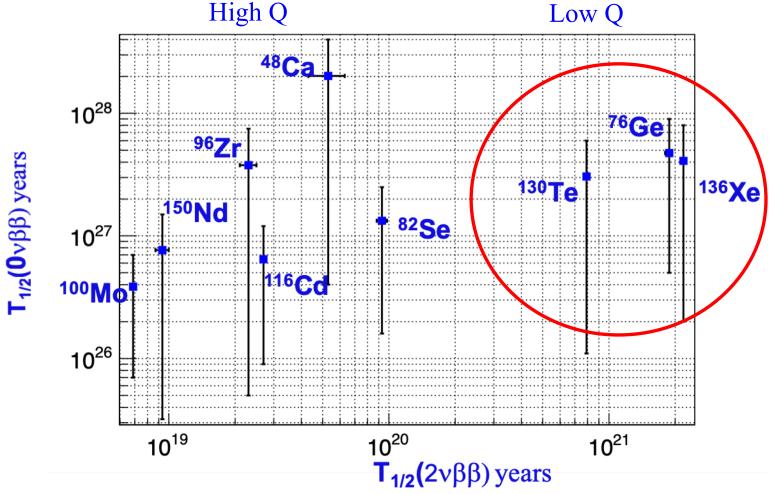

Lisi, Taup 2019

KATRIN m(ν) < 1.1 eV (90% CL)

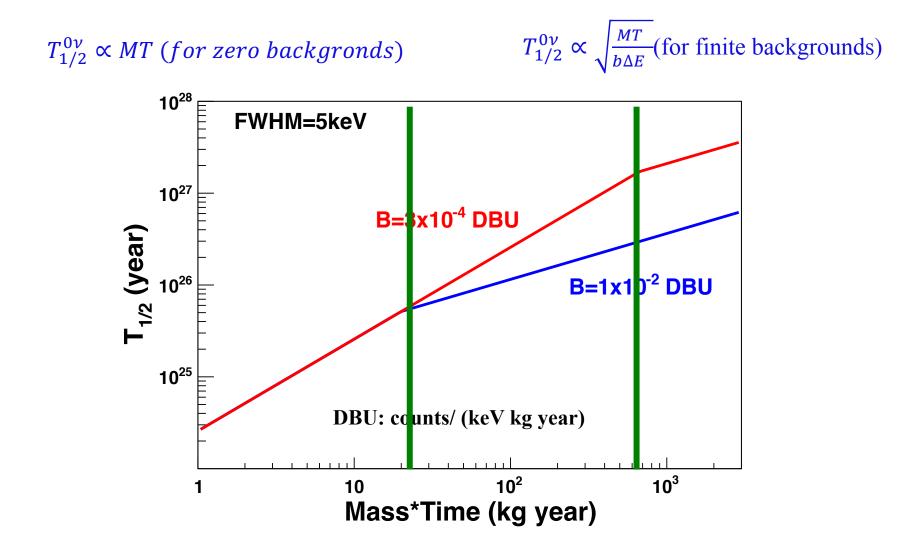


Matrix Elements

Engel and Menendez, Rep. Prog. Phys. 80, 046301 (2017)

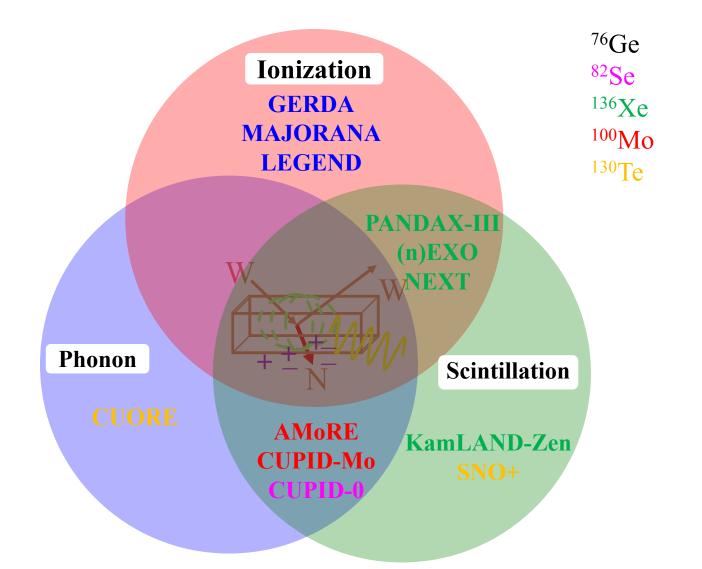


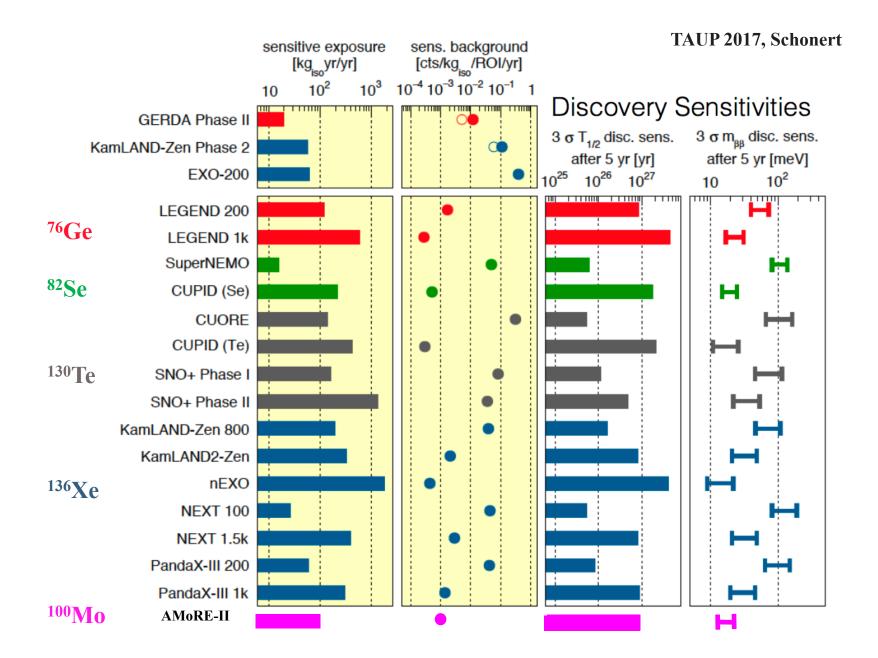
- An uncertainty of a factor of three in the matrix element corresponds to nearly an order of magnitude uncertainty in the amount of material required.
- The expected lifetime for neutrinoless DBD differs about factor up to 5 with average values of different models.



<u> $0\nu\beta\beta$ vs $2\nu\beta\beta$ T(1/2)</u>

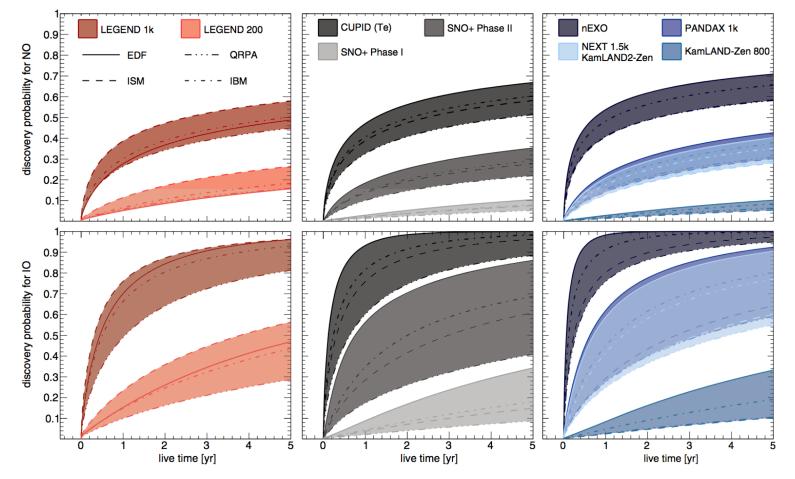
- A correlation between $2\nu\beta\beta$ half-life(measured) vs $0\nu\beta\beta$ half-life calculated with various models for inverted mass hierarchy(20-49 meV).
- Often, it is said that there is no relation between two and zero matrix elements.




 If "zero" backgrounds in ROI(Region of Interests), the half-life limits are proportional to the detector mass and DAQ time. If finite backgrounds, sqrt (MT).

Detector Techniques for 0vββ

Similar techniques are used as direct dark matter experiments



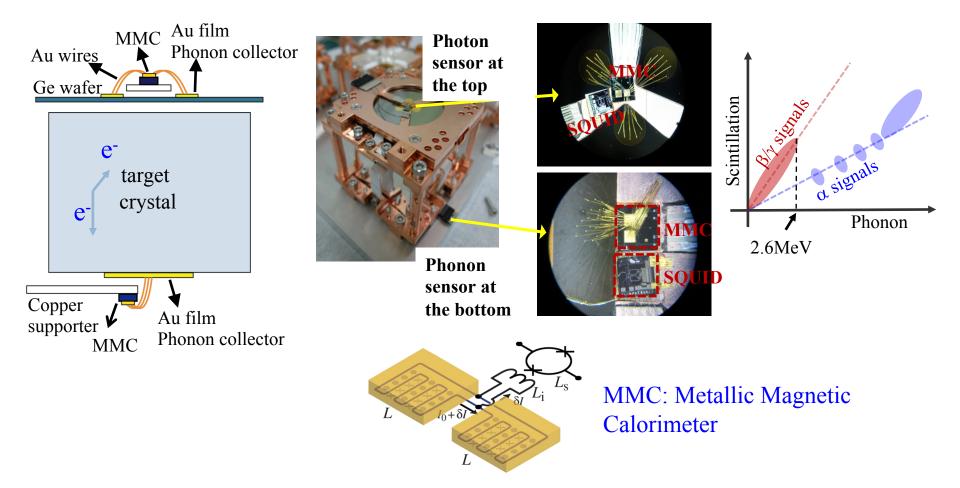
Discovery probability

- Discovery probability for NO and IO assuming logarithmic mass distribution and flat in the angles and phases.
- Even normal hierarchy, the probability is high ~ 50% in 5 years for next generation experiments.

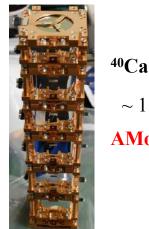
15

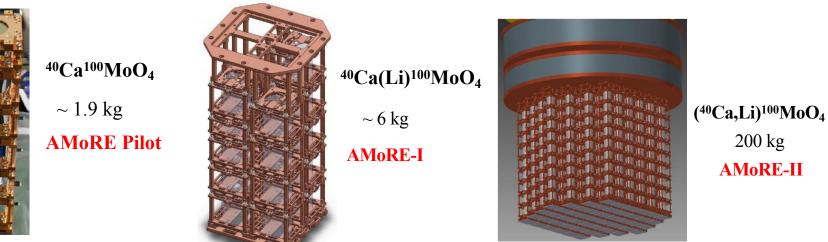
Agostini, PRD 96, 053001 (2017)

AMoRE Collaboration


- Total 105 members from 23 institutes at 8 countries.
- Two meetings per year.

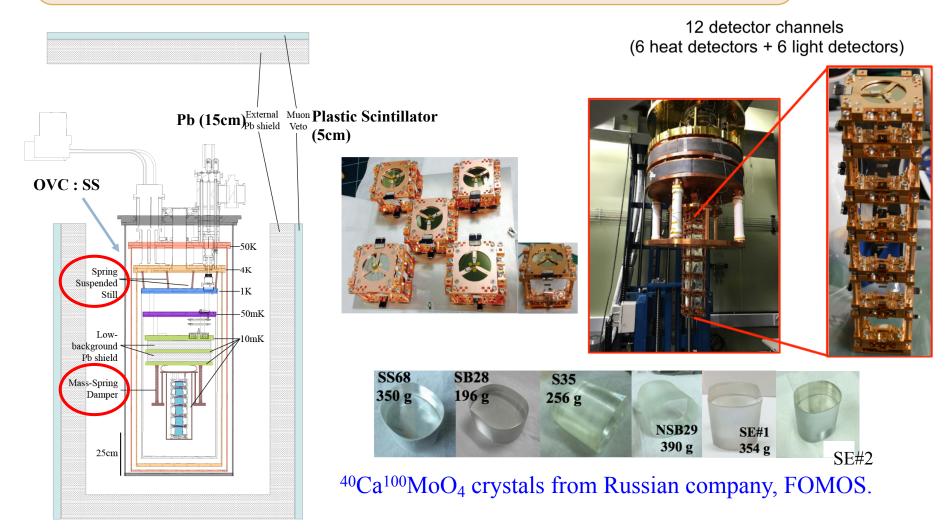
Korea	CUP, Institute of Basic Science (CUP)		
	Kyungpook National University (KNU)	11	Simulation, Crystal Tests
	Soongsil University (SSU)	3	Theory
	Seoul National University (SNU)	4	Low Temp., Data Analysis
	Ehwa Womans University (EWU)	3	HPGe
	Semyung University (SMU)	1	
	KRISS	3	DR, Cryostat
	Sejong University (SJU)	3	Data Analysis, Muon
	Chung-Ang University (CAU)	3	Theory
Russia	JSC FOMOS-Materials (FOMOS)	2	CMO crystals
	Baksan Neutrino Observatory of INR RAS (BNO)	8	HPGe, Simulation
	National Research Nuclear University (NRNU)	1	Backgrounds, Crystals
	Nikolaev Institute of Inorganic Chemistry (NIIC)	3	Enriched Crystal
Germany	Physikalisch-Technische Bundesanstalt (PTB)	2	SQUID
	Kirchhoff-Institute for Physics (KIP)	3	MMC, Photon Detector
Ukraine	Institute for Nuclear Research (INR)	7	Simulation, Background
China	Tsinghua University (THU)	3	
Thailand	Nakhon Pathom Rajabhat University (NPRU)	6	
Indonesia	Institut Teknologi Bandung (ITB)	2	Muon Veto
	University of Mataram (UM)	1	
Pakistan	Abdul Wali Khan University (AWKUM)	1	
	Kohat University of Science and Technology (KUST)	2	


Principle of AMoRE Detector


- Use Mo containing Scintillating Bolometer : (⁴⁰Ca,X)¹⁰⁰MoO₄ + MMC
- For Each crystal, phonon and photon sensors made of MMCs+SQUIDs to separate alphas (background) and betas (signal). Highly Technical !

Planned Phases of AMoRE Project

18


ckky : counts/ (keV kg year)

	AMoRE-Pilot	AMoRE-I	AMoRE-II
Crystal Mass (kg)	1.9	6	200
Backgrounds(ckky)	10-2	10-3	10-4
$T_{1/2}(year)$	1.1x10 ²⁴	8.2x10 ²⁴	8.2x10 ²⁶
m _{bb} (meV)	380-719	130-250	13-25
Schedule	2015-2018	2019-2022	2022-2026

It took long time to get ready for AMoRE-II !

AMoRE-Pilot Setup

- To demonstrate the detection principle and low backgrounds.
- 6 crystals making total mass 1.89 kg.
- Two vibration reduction systems are installed.

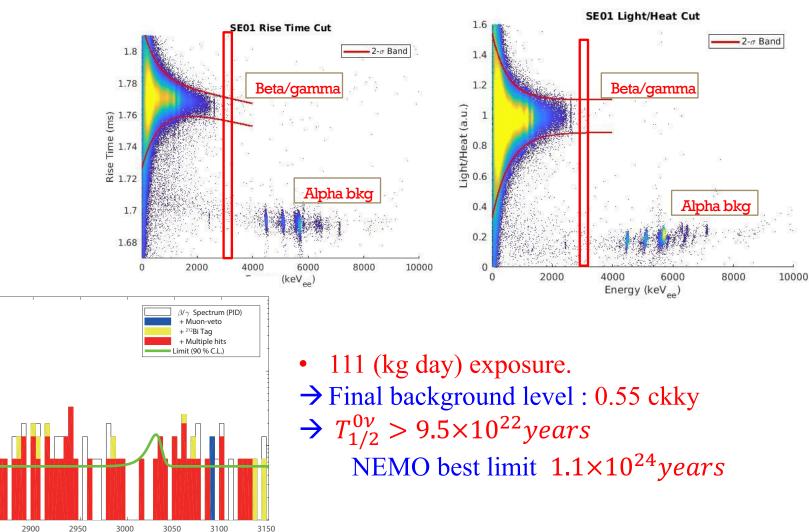
<u>19</u>

10 4

10

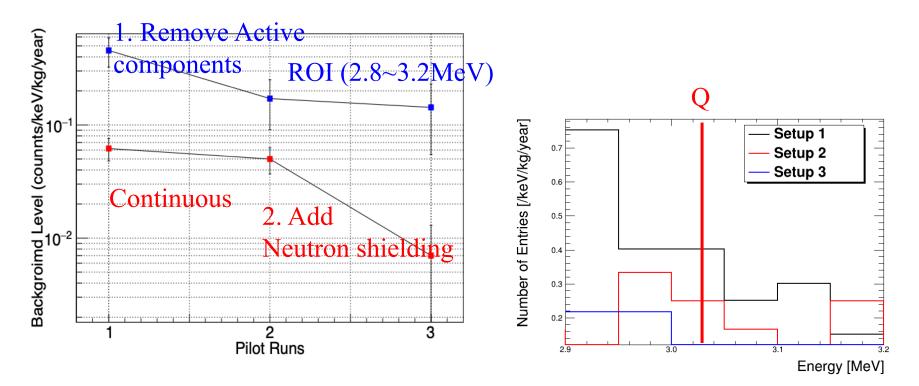
10 0

10⁻¹ **2**850


Counts / (keV kg y)

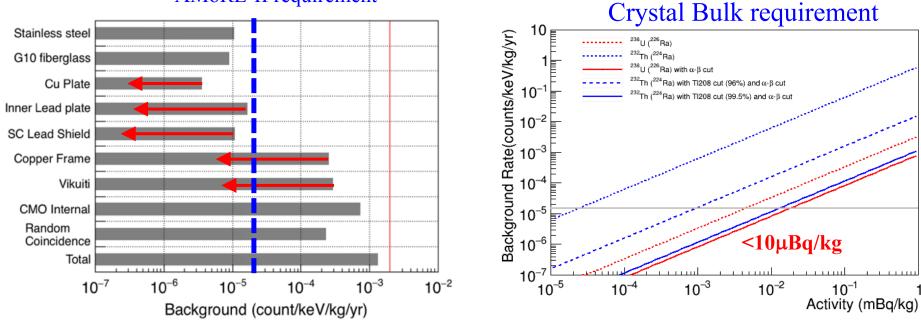
Demonstration of Detector Performance

Alpha Backgrounds are effectively rejected with PSD & Light/Heat raio.


Energy (keV ee)

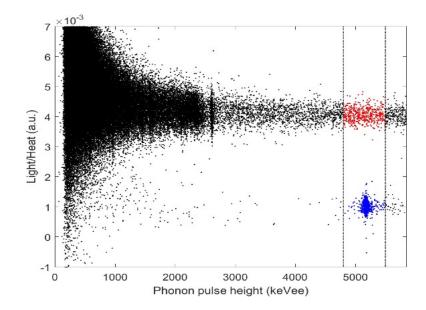
arXiv:1903.09483, Accepted to EPJC

Background reduction

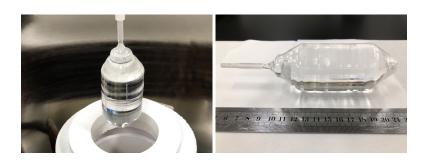

Two major background sources are removed.

The goal for AMoRE-I starting this Oct. is to understand the background better. More shielding are added for this test.

Estimation for AMoRE-II backgrounds


Tried to identify critical components in the setup for AMoRE-II experiment.
For AMoRE-II, the Crystal Bulk activity for zero background has been set.

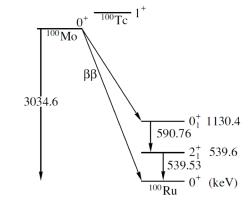
AMoRE-II requirement


Li₂¹⁰⁰MoO₄ Crystal Test for AMoRE-II

- $\Box \quad Li_2{}^{100}MoO_4 \text{ crystal is considered rather than} \\ {}^{40}Ca{}^{100}MoO4 \text{ crystal for AMoRE-II.}$
- □ Particle ID seem to be satisfactory.
- A problem of Au foil attachment. After a few months, the Au phonon collector seems unstable. Working on the solution.

Enriched $Li_2^{100}MoO_4$ crystal is grown successfully at CUP.

mass : 607.2 g diameter : 50.0 ~ 51.3 mm



¹⁰⁰Mo decay to excited state

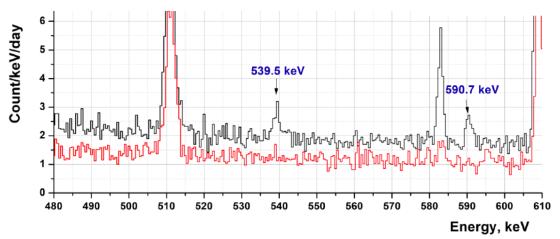
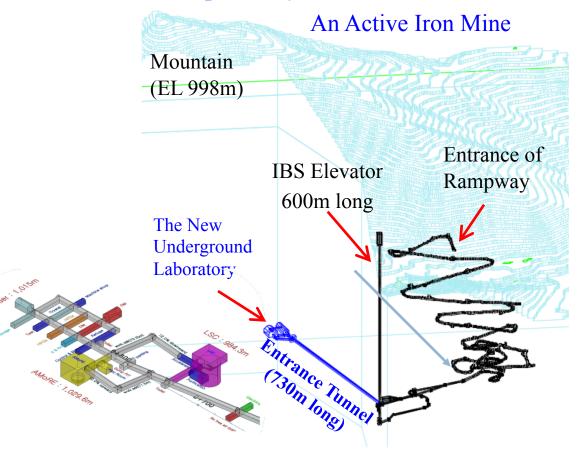

- Gamma rays from ¹⁰⁰Mo have been measured with HPGe-Array.
- $2\nu\beta\beta$ to an excited state is observed !!
- Try to measure $0^+ \rightarrow 2^+$ decay for the first time !!

TABLE 1. Best present limits on $2\nu\beta\beta$ decay to the 2_1^+ excited state (limits at 90% C.L.). $E_{2\beta}$ is energy of 0^+ - 2_1^+ transition.

Isotope	$E_{2\beta}$, keV	<i>T</i> _{1/2} , y	Theory [23]	Theory [24]
⁴⁸ Ca	3279.4	$> 1.8 \cdot 10^{20} [27]$	$1.7 \cdot 10^{24}$	-
¹⁵⁰ Nd	3037.4	$> 2.2 \cdot 10^{20}$ [28]	-	$7.2 \cdot 10^{24}$ [25]
⁹⁶ Zr	2577.6	$> 7.9 \cdot 10^{19} [29]$	$2.3 \cdot 10^{25}$	$(1.1 - 1.4) \cdot 10^{21}$ [26]
100 Mo	2494.9	$> 2.5 \cdot 10^{21} [11]$	$1.2 \cdot 10^{25}$	$2 \cdot 10^{22}$ - 10^{23}
⁸² Se	2221.4	$> 1.0 \cdot 10^{22} [30]$	$1.7 \cdot 10^{27}$	$(1.0 - 2.4) \cdot 10^{24}$ [26]
¹³⁰ Te	1991.7	$> 2.8 \cdot 10^{21} [31]$	$6.9 \cdot 10^{26}$	$(4.2 - 9.1) \cdot 10^{23}$
124 Sn	1689.9	$> 9.1 \cdot 10^{20} [32]$	-	$(5.3 - 6.4) \cdot 10^{24}$
¹³⁶ Xe	1639.3	$> 4.6 \cdot 10^{23} [33]$	$3.9 \cdot 10^{26}$	$1.6 \cdot 10^{25}$ - $4.8 \cdot 10^{26}$
^{116}Cd	1519.9	$> 2.3 \cdot 10^{21} [34]$	$3.4 \cdot 10^{26}$	$(2.5 - 5.2) \cdot 10^{24}$
⁷⁶ Ge	1479.9	$> 1.6 \cdot 10^{23} [35]$	$5.75\cdot10^{28}$	$(2.4 - 4.3) \cdot 10^{26} [26]$

Yemilab for AMoRE-II



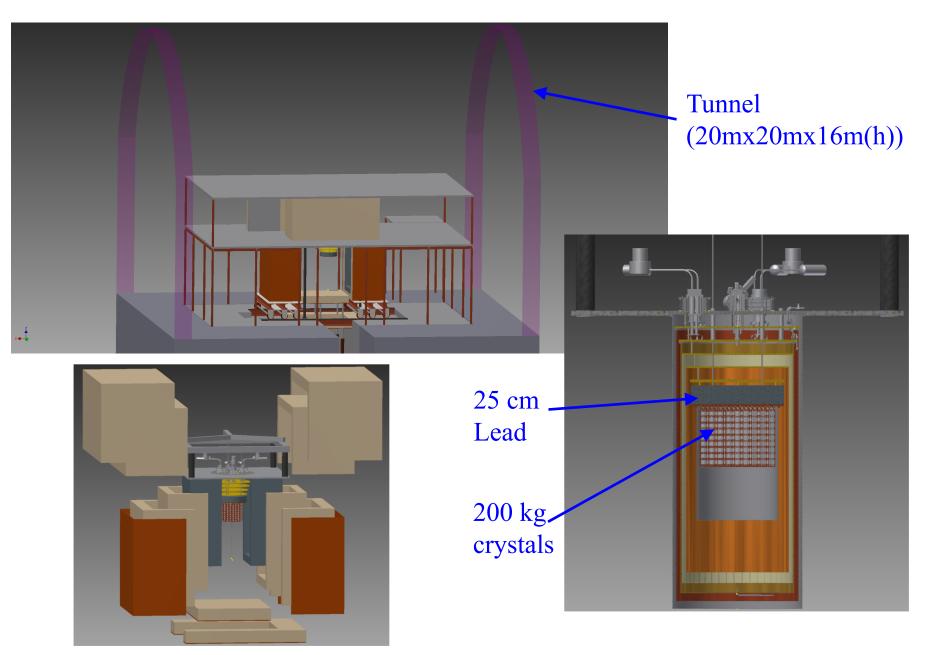
- Important Concepts
- An independent entrance (vertical lift for human) from mine activity.
- The construction starts early of 2019 and be completed by end of 2020.

Bird's eye view of Handuk Iron Mine

Large (>2000m²), deeper (1100m depth)

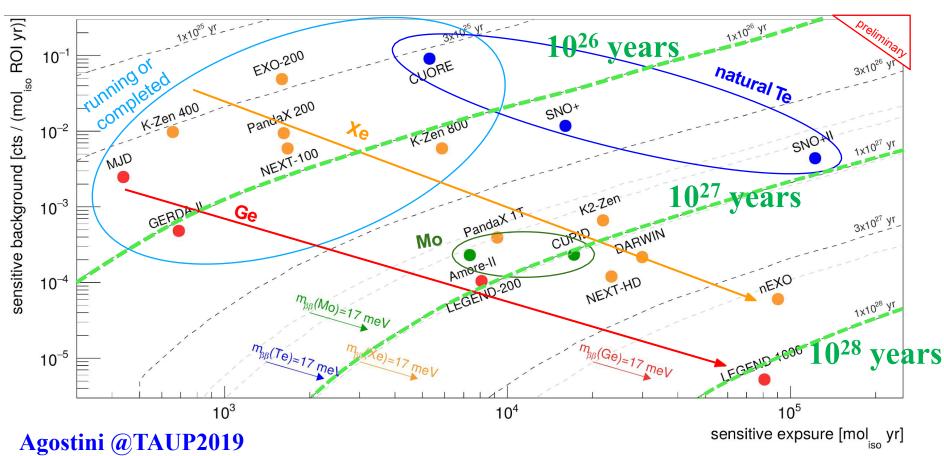
The floor plan

• ~ 600 m tunnel is excavated at present.


26

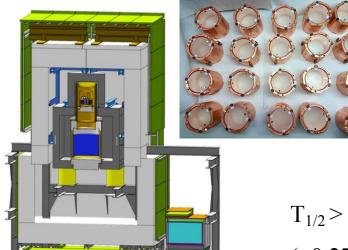
• 8 experiments with 12 space, 10 utility rooms

Design for AMoRE-II experiment


Schedule

Construct AMoRE-II until Oct. 2021, and Upgrade to 100 kg of ¹⁰⁰Mo by 2023.

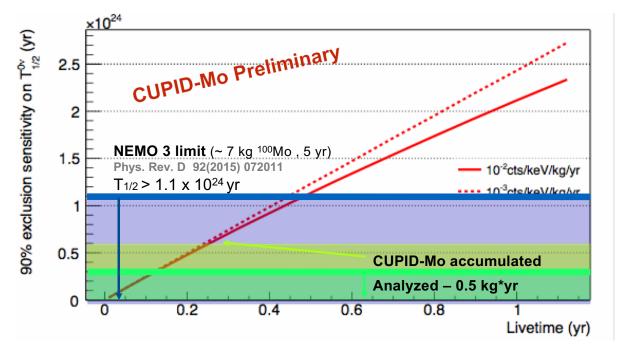
							20											201	9									20	20									20					
Item	Description	L	Q1		_	Q2	_	_	Q3			Q4	\bot	Q		<u> </u>	Q2		Q	<u> </u>	+	Q4	_		Q1	\bot	Q2	-		23	_	Q4	_		Q1		Q2	_		23			24
		1	2	3	4	5	6	7	8	9	10	11 1	12 1	2	3	4	5	6	7 8	9	10	11	12	1	2 3	4	5	6	7	8 9	10	11	12	1	2	3 4	5	6	7	8	9 10	0 1	11
	Elevator													~			_		_	L			_							_		_			_							4	
	Tunnel									_	_		_	_	•					t	t		Ť					-	_						_				_			4	
Infra	Electricity/Air/Network						_				_						_		_	L									-			•							_	_		1	
	Hoist						_				_			_			_		_	L				_			_			•	1	٠.			_		_		_	_		4	
	AMoRE Room													_					_	L										•		-										1	
	Electricity/Air/Network																			⊢													•									1	
	Design									-	+		÷							E	\rightarrow	-																					
Shielding	NFEC	_															•																										
Sinclung	Bidding/Manufacturing																						- 1	\vdash	-	•				•													
	Installation																													•			-										
	Manufacture				- (-	->																																			I	
	Installation HQ (incl. can test)																														-					•							
	Vacumm can production																						-																				
DR	Move to Yemi																																•		*					T			
DK	vib. care production and install																						- 4	\vdash		+			_			_	•							T			
	Lead shield design production																			Г														_	_	-	•					Т	
	Yemi Installation (incl. lead shield)																			Г																	-		•			Т	
	wiring Yemi																																					-	-			T	
	Crystal Decision								_		_						-		-	-		•																				Т	
	Crystal Production																			Г		•	-				-						->									T	
	MMC target + sensor production test																			Г				•	-										•							T	
	SQUID production test																			Г	-												->									T	
	Phonon collector fab.																								-									-								T	
D ()	Heater fab.																														\rightarrow	•										T	
Detector	detector tower storage																												-													T	
	Detector Cu frame design production																						1		_		-		->0						_		+					T	
	Sensor assembly & test																											-							_		+					T	
	Module assembly (incl. gold bonding)													-						1								-							-		↦	-					
	SC shield design production																			1	1							-							-		↦					T	
	Installation																			1	1																1			-		-	



Comparison with other experiments.

- AMoRE-II is comparable to CUPID, LEGEND-200, KamLAND2-ZEN.
- IBS(CUP) has a MOU with INFN(Gran Sasso) to collaborate between AMoRE and CUPID.

CUPID-Mo


30

Operated at LSM by the EDELWEISS/CUPID-Mo collaborations, follow up of the LUMINEU experiment. 20 x ~210 g cylindrical enriched Li2MoO4 crystals

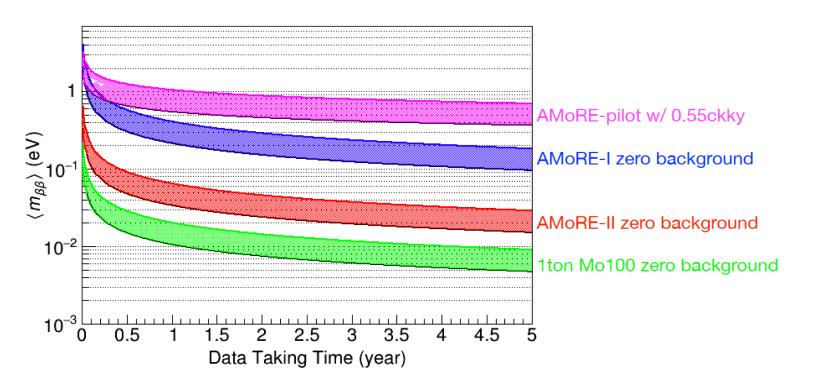
Schmidt @TAUP2019

 $T_{1/2} > 3*10^{23}$ yr at 90% C.L with ~0.5 kg*yr exposure

(~0.27 kg*yr of ¹⁰⁰Mo), 81% signal acceptance

CUPID-Mo is similar to AMoRE and will be better to NEMO first.

Sensors are different; NTD vs MMC


31

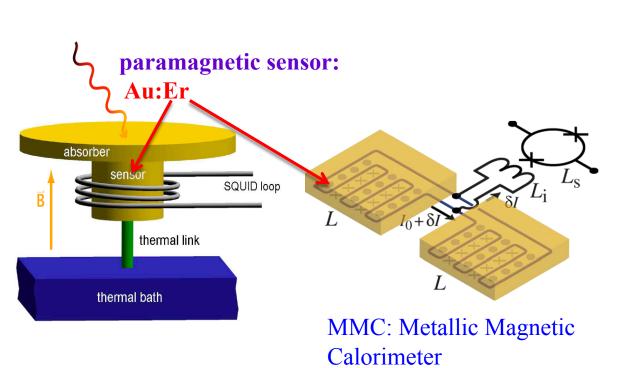
Future

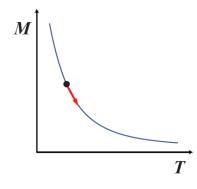
Modular expansion is possible.

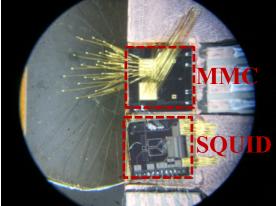
After AMoRE-II, ton scale experiment can be done. \sim CUPID 1ton.

CUPID-Mo experiment at LNGS is a competitive project. CUPID-Mo & AMoRE will collaborate for future combination in a way similar to Gerda and Majorana collaboration.

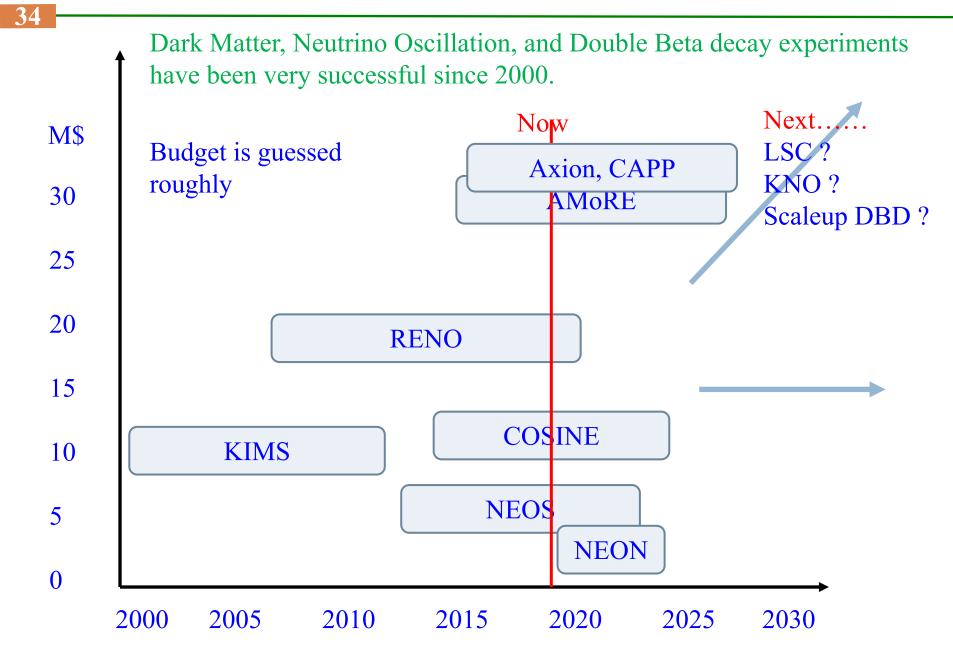
Summary

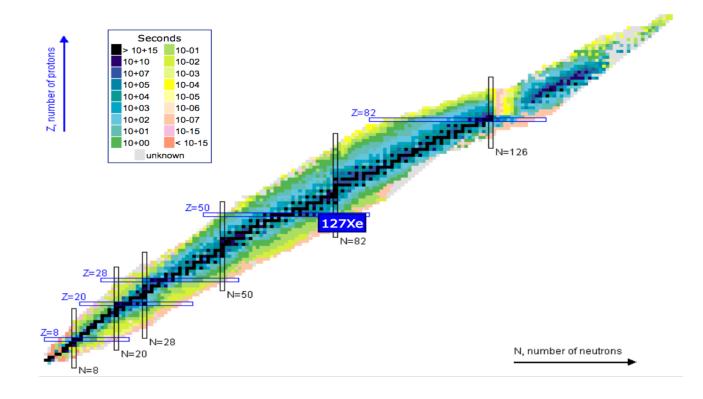

- AMoRE-II aim to be sensitive to 10²⁷ year range for ¹⁰⁰Mo isotope. AMoRE-Pilot demonstrated detector performance and identified the background sources. Collaborative work with CUPID-Mo group is anticipated.
- AMoRE-II construction began and will be installed by end of 2021.
- AMoRE-II is the largest scale bolometer DBD experiment with concrete plan.
- Construction of Yemilab for AMoRE-II is going well.
- The LT technology for underground physics are developed and can be applied to other experiments, such as Low mass DM or SIMP search.


Thermal detectors at low Temp. for AMoRE

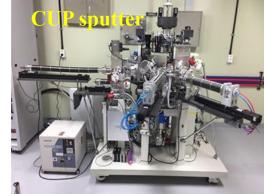

• Particle interaction is detected through a temperature change at mK temperature.

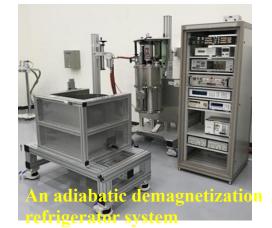
Energy (Heat) absorption


- \rightarrow Change in Temperature in an absorber
- → Change in Magnetization in a paramagnetic alloy(Au,Ag:Er) in a constant magnetic field
- \rightarrow Induced current measured with a SQUID.



Non-accelerator Projects in Korea

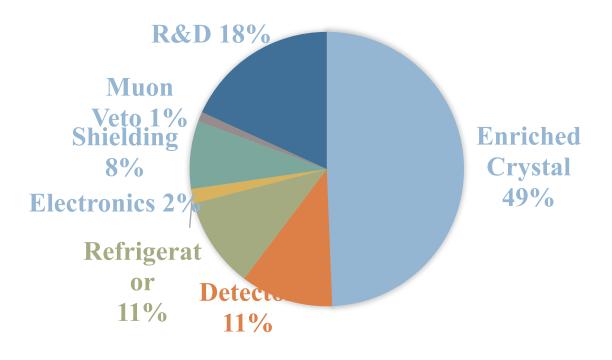

 How many nuclei are dangerous among ~ 3000 nuclei ? Go through all the nuclei to find potential dangerous nuclei.



Fab facility for MMC @ CUP

CUP produces MMC sensors. Squids are provided by our collaboragtors in Heidelberg group.

Fabrication facility						
Matelthin film avatan	Metallic magnetic calorimeter sputtering system					
Metal thin film system	Radon free environment e-beam evaporator system					
Pattern lithography equipment	Maskless Micro Pattern Generator					
Pattern innography equipment	Dual Focus Micro-Pattern Mask Aligner					
Metal film etching equipment	ICP-RIE (Inductively Coupled Plasma- Reactive Ion Etching) system					
Insulation film growth equipment	LT-PECVD (Low-Temperature Plasma-enhanced chemical vapor deposition)					
	Anodizing unit					
Thick Au layer fabrication	Simple electroplating unit					
Chip dicing	Dicing saw					
Resist coating unit	Spin coating system Hot plate					
Fabrication step verification	3D Measuring Laser Microscope					
	Optic Microscope					
Collector annealing system	Rapid thermal process system					



Budget

BUDGET OF AMORE-II FULL Until 2023 CONSTRUCTION (~23 M\$)

Work force for AMoRE-II

•	Overall Planning	Yeongduk Kim, Hongjoo Kim
•	LT	Yong-Hamb Kim
	 Crystal Tests 	Jungho So, Seungcheon Kim
	 DR & Cryostat Design 	Chanseok Kang
	 MMC & SQUIDS 	Hejin Lee, Sora Kim, Jinha Jeon, Sanggon Kim
•	Crystal	Moohyun Lee
	 Crystal growing 	Sejin Na, Daeyon Kim, Jukyung Son
	 Purification 	Olga, GeonA Sin
	 NIIC crystals 	Schlegel
•	Infra	
	 Cryostat, Shielding 	Chanseok Kang
	 Clean Room 	Kangsoon Park
	 DAQ, Muon Veto 	Jaison Lee
•	Simulation	Eunjoo Jeon
•	Data Analysis	Yoomin Oh
	 Developers 	Kazalov, Youngsoo Yoon + 13 students.

Ultra-pure Crystal R&D

Enriched $Li_2^{100}MoO_4$ crystal grown at CUP

We have grown an enriched LMO crystal without any purification to check what level of contamination would be reached by only from crystal growing process.

 $Li_2CO_3+MoO_3 \rightarrow Li_2MoO_4+CO_2$



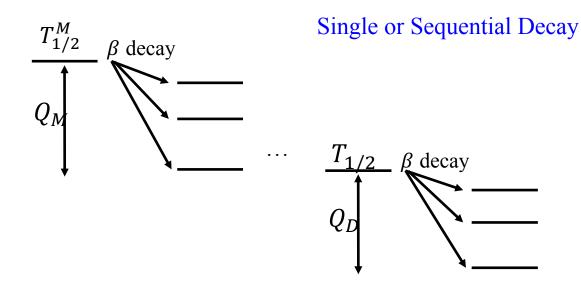
CZ02-L1803E

- 1. mass : 607.2 g (including seed)
- 2. diameter : 50.0 ~ 51.3 mm
- 3. Total length : 136.0 mm
- 4. Body length : 64.4 mm

- □ Natural LMO tested at wet dilution refrigerator.
- \square 300 g crystal + MMC
- □ Light/Heat ratio gave DP~12.
- A problem of Au foil attachment. After a few months, the Au phonon collector seems unstable.

Purities of CUP grown LMO crystals

	Single crystallized I (with purified Mo			puble orystall		Mi Polishi	L MO tace							
Element		Al	К	Ba	Sr	Pb	Th	U						
No.	sample	(ppb)	(ppb)	(ppb)	(ppt)	(ppt)	(ppt)	(ppt)						
	Single crystallized natural LMO (w/o purification)													
CMD 113	L1701-1	48.1	347.3	5.445	<15	<300	<15	<16						
CMD 113	L1701-2	21.7	449.2	5.401	75	<300	<15	<16						
		Single cr	ystallized natu	ral LMO (Mo	O ₃ sublimed)									
CMD163.1	CZ02-L1706-T	<11	38	7.579	<50	<100	<8	<8						
CMD163.2	CZ02-L1706-B	<11	83	9.617	<50	<100	<8	<8						
		Double cr	ystallized natu	ural LMO (Mo	O ₃ sublimed)									
CMD191.1	CZ02-L1801-T	<11	<30	4.744	<50	<100	<8	<8						
CMD191.2	CZ02-L1801-B	<11	<30	5.814	<50	<100	<8	<8						
]) (w/o purifica	tion)									
CMD00236.2	CZ02-L1803E-T	1437	<40	6.82	<31	<225	<6	<6						
CMD00236.3	CZ02-L1803E-B	1484	<40	7.07	<31	<225	<6	<6						
CMD00236.1	CZ02-L1803E-RM	3824	249	28.58	4110	12290	71	472						


- Li2MoO4 crystal is pure enough for AMoRE-II.
- CUP can purify & Grow the crystals. Another provider for satisfactory crystal is AMoRE collaboration.

"Events" dangerous to DBD

- There is no localized "event" with energy release > 2MeV other than nuclear decay, passing muons, and entering hadrons and gammas.
- 2 conditions to be "dangerous nuclei" for ¹⁰⁰Mo experiment.

1) 30 days
$$< T_{1/2}^M < 10^{11}$$
 years.

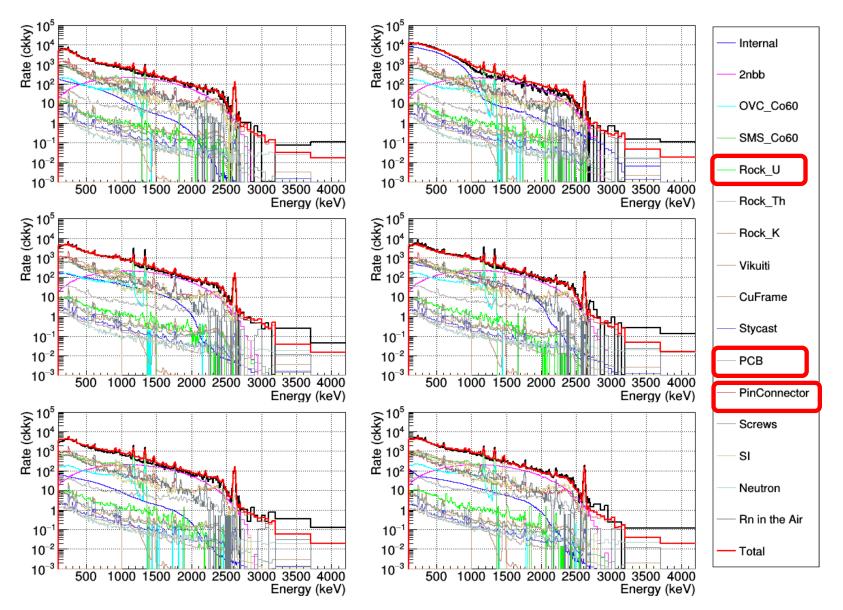
- 2) β decay with Q_M or $Q_D > 3.02 \text{MeV}$
- Go through all nuclei including isomers.

Results

El	Decay	$T_{1/2}$	Q	Mother	Chain	Comment
			MeV	N/A		
^{26}Al	EC	$7.4 \mathrm{x} 10^5 \mathrm{y}$	4.004	N/A		Long lifetime
⁵⁶ Co	EC	0.21y	4.567	N/A		Short lifetime
⁸⁸ Y	EC	0.29y	3.623	⁸⁸ Zr (0.23 y)		Short lifetime
¹⁰⁶ Rh	B-	30s	4.004	106 Ru(1.02y)		
¹²⁶ Sb	B-	12.5d	3.670	126 Sn(2.3x10 ⁵ y)		Long lifetime
¹⁴⁶ Eu	EC	4.61d	3.878	146 Gd (0.13 y)		Short lifetime
²⁰⁸ T1	B-	3.05m	4.999	²²⁸ Th (1.91 y)	Th232	Main
²⁰⁹ T1	B-	2.16m	3.970	²³³ U(159200y)	U233	2.1% branching
²¹⁰ Tl	B-	1.3m	5.482	²²⁶ Ra(1600y)	U238	0.02% branching
²¹⁴ Bi	B-	19.9m	3.269	²²⁶ Ra(1600y)	U238	Main

- Only Thorium and Uranium natural radioactivity are dangerous for Q> 3.02MeV. → Great advantage to run ¹⁰⁰Mo!
- ^{110m}Ag(3010.5 keV) doesn't contribute for Mo experiment.
- Cosmogenic excitation is negligible after 1 year at underground.


Construction



Background Modeling & Reduction

Active components harmful at ROI are identified.

